SECTION 5: ANALYSIS METHODOLOGY

5.1: Steady-State Analysis

Facilities in the SPP footprint 69 kV and greater were monitored for exceeding 90 percent thermal loading or voltage below 0.95 per unit. Needs are generated at 100 percent thermal loading or voltage below 0.9 or greater than 1.05 per unit for non-base case conditions and voltage below 0.95 per unit for base case conditions. All facilities in First Tier control areas were monitored at 100 kV and above. System intact (base case) and N-1 contingency analysis was performed on SPP facilities at 69 kV and greater and at 100 kV and greater for First Tier control areas in the 2016 ITPNT models.

After performing the initial reliability assessment identifying the bulk power problems, thermal and voltage needs were posted on the TrueShare site for stakeholder accessibility.

Order 1000

In order to comply with FERC's Order 1000, SPP developed the Transmission Owner Selection Process (TOSP). In accordance with Attachment O, Section III.8.b, SPP shall notify stakeholders of identified transmission needs and provide a transmission planning response window of 30 days during which any stakeholder may propose a DPP. SPP shall track each DPP and retain the information submitted pursuant to Attachment O, Section III.8.b(i). The initial 30-day window for proposals opened October 1, 2015, for Scenario 0/5/CBA thermal and voltage needs. ${ }^{1}$

Project Processing Methodology

Stakeholders submitted 1,664 DPPs through the Order 1000 process, which included 509 duplicates, 33 modeling corrections, 7 non-transmission solutions and 15 transmission operating

[^0]guides. In addition to the DPPs and FERC Order 890 projects, 354 SPP staff solutions were considered to address the reliability needs. All together 2,018 projects were evaluated.

To efficiently evaluate the high volume of submitted and created projects that would solve all identified reliability needs within the allotted schedule, a software solution was developed by SPP. This comprehensive project-testing tool tested an individual project against each reliability need identified in the needs assessment using PSS® ${ }^{\circledR}$. The output of the tool indicated if the project mitigated the reliability need according to SPP Criteria for both thermal-loading or per-unit voltage. Once a project was identified as solving a reliability need, a set of reliability metrics was calculated.

The steady-state reliability metrics ("metrics") were developed by SPP staff and stakeholders and approved by the TWG for use as a tool for project selection. The metrics coincide with thermal and voltage reliability needs. The first metric is Cost per Loading Relief (CLR), which relates the amount of thermal loading relief for the cost of a project for a need. The second metric is Cost per Voltage Relief (CVR), which relates the amount of voltage support for the cost of a project for a need.

Metrics were calculated for each project's performance for each need. After the metrics were calculated, the projects were ranked per need and by the lowest CLR or CVR. The project with the highest ranking (lowest CLR or CVR) was identified as the most optimal project to address the particular need.

Figure 5.1: Project Processing Methodology Overview

Project Selection Methodology

SPP staff developed a standardized conceptual cost template for assigning project costs to all stakeholder-submitted and SPP-staff-developed projects. After all projects were assigned a cost, each project was compared against all other projects using steady-state reliability metrics. To perform a comparison of the extensive number of projects, a programmatic solution was developed by SPP staff. Using this project-selection software, a subset of projects was generated by considering project cost as related to the amount of targeted relief the project could provide. Displacement of lower-voltage-level projects occurred by higher-voltage-level projects when a higher-voltage-level project solved needs at lower-voltage levels. SPP staff applied engineering judgment to discern if a displaced project should remain in the portfolio. The subset of projects selected that solved all reliability needs was moved into the portfolio.

Figure 5.2: Project Selection

Staging

Selected projects were then timed using linear interpolation based on line loading between available model years of 2017 and 2020. For example, to time a solution due to a 2020 potential overload, SPP interpolated line loadings between the 2017 and 2020 models to determine when the loading exceeded 100 percent. The need date was assigned based on this analysis. A similar process for timing potential voltage issues was used to check for per unit under-voltage conditions below 0.90 and over-voltage conditions above 1.05.

SPP's transmission-system performance was assessed from different perspectives designed to identify transmission-expansion projects necessary to accomplish the reliability objectives of the SPP RTO.

- Avoid exposure to NERC Reliability Standard TPL-001-4 P0 and P1 event violations during the operation of the system under high stresses.
- Contribute to the voltage stability of the system.
- Reduce congestion and increase opportunities for competition within the SPP Integrated Marketplace.

5.2: CBA Model Development

To account for the impacts of the Integrated Marketplace on the SPP footprint, a Consolidated Balancing Authority (CBA) scenario model was developed as part of the 2016 ITPNT Assessment. The CBA scenario modeled SPP as a single BA and only modeled power transfers across the SPP seams. The CBA scenario utilized the SPP portion of the NERC Book of Flowgates updated with information from the 2016 Flowgate Assessment, 2016 ITPNT transmission topology and 2015 ITP10 2024 Summer Base F1 Scenario economic dispatch data. The goal was to attain a Security Constrained Unit Commitment (SCUC) and SCED for each year and season modeled in SO and S5.

To simulate changes that will occur to the SPP portion of the NERC Book of Flowgates due to upgrades coming into service during the defined study period of the 2016 ITPNT Assessment, a constraint assessment was completed to determine if any system constraints should be added, removed or modified before the SCUC/SCED was created. The constraint list was reviewed and approved by the TWG before being applied to the models.

Making use of the economic data from the latest ITP10 Assessment, an economic DC tool committed units, creating a dispatch to deliver the most economical power around the constraints approved by the TWG. This unit commitment and dispatch was the SCUC/SCED that was applied to the power-flow model used to complete the $\mathrm{N}-1$ contingency analysis described in the Steady-State Analysis section. The security constrained economic dispatch in the CBA was applied to the SPP footprint only. The rest of the Eastern Interconnection remained unchanged.

5.3: Rate Impacts

The SPP Tariff requires that a "Rate Impact Analysis" be performed for each ITP per Attachment O: Transmission Planning Process, Section III: Integrated Transmission Planning Process, Subsection 8:
"8) Process to Analyze Transmission Alternatives for each Assessment:
The following shall be performed, at the appropriate time in the respective planning cycle, for the 20-Year Assessment, 10-Year Assessment and Near-Term Assessment studies: ...
f) The analysis described above shall take into consideration the following:
vi) The analysis shall assess the net impact of the transmission plan, developed in accordance with this Attachment O, on a typical residential customer within the SPP Region and on a \$/kWh basis."

The rate-impact-analysis process required to meet this 2016 ITPNT requirement was developed under the direction of the Regional State Committee in 2010-2011 by the Rate Impact Task Force (RITF). The RITF developed a methodology that allocated costs to specific rate classes in each SPP Pricing Zone (Zone).

The first step in this process is to estimate the zonal cost allocation of the Annual Transmission Revenue Requirement (ATRR). This cost-allocated ATRR is calculated specifically for the ITPNT upgrades using the ATRR Forecast (Forecast). The Forecast allocated 2016 ITPNT upgrade costs to the Zones using the Highway/Byway cost-allocation method. This method allocates costs to the individual Zones and to the Region based on the voltage level of the upgrade. Transformer costs were allocated based on the low-side voltage. Regional ATRRs are summed and allocated to the Zones based on their individual Load Ratio Share percentages.

Highway Byway Cost Allocation		
Voltage	Regional	Zonal
300 kV and above	100%	0%
$100 \mathrm{kV}-299 \mathrm{kV}$	33%	67%
Below 100 kV	0%	100%

Table 3: Highway Byway Cost Allocation
The following inputs and assumptions were required to generate the Forecast:

- Initial investment of each upgrade.
- New 2016 ITPNT upgrade investments modeled were $\$ 327 \mathrm{M}$ in 2016 dollars.
- TO's estimated individual annual carrying charge percent.
- Voltage level of each upgrade.
- In-service year of each upgrade.
- 2.5 percent annual straight-line rate-base depreciation.
- 2.5 percent construction price inflation applied to 2016 base year estimates.
- Mid-year in-service convention.

SOUTHWEST POWER POOL, INC.

PART II: STUDY FINDINGS

SECTION 6: PROJECT SUMMARY

6.1: Model Analysis and Results

The base case ($\mathrm{N}-0$) and contingency ($\mathrm{N}-1$) analysis that was completed provided SPP with a list of thermal and voltage needs. The table below summarizes all the observed thermal needs sorted by year, season and scenario.

Figure 6.1: Total and Unique Thermal Needs
The table below shows all the observed voltage needs sorted by year, season and scenario observed in the base case ($\mathrm{N}-0$) and under contingency ($\mathrm{N}-1$) conditions.

Figure 6.2: Unique Voltage Needs

6.2: Reliability Needs and Project Development Summary

Transmission upgrades submitted through the Order 890 and Order 1000 processes were analyzed, and SPP staff developed projects to mitigate potential reliability problems that were unable to be solved by mitigation plans or operating guides. Below is the full list of projects in the ITPNT.

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
New Mustang-Seminole 115 kV line	SPS	DOSS INTERCHANGE 115KV ROZ 3 115KV AMERADA HESS CO2 SUB $115 K V$	17	$6 / 1 / 2017$
SAN_ANDS_TP3-SEMINOLE				
115KV CKT 1				
DENVER CITY INTERCHANGE				

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
Rebuild and reconductor Kiamichi Pump TapFort Towson 69 kV line	AEP/ WFEC	FORT TOWSON - KIAMICHI PUMP TAP 69KV CKT 1	9	6/1/2018
Rebuild and reconductor Valliant-Kiamichi Pump Tap 69 kV line	AEP/ WFEC	KIAMICHI PUMP TAP VALLIANT 69KV CKT 1	4.8	6/1/2018
New Static VAR Compensator (SVC) at Arco 138 kV bus	WFEC	CANUTE 2 69KV ELK CITY 69KV DILL 69KV HAZELTON 69KV GRANITE 69KV ARCO 138KV BASELINE 138KV COMANCHE 138KV		6/1/2017
Tap Atoka-Eagle Creek 115 kV line New Substation (Artesia Country Club Tap) New Substation2 (Artesia 13th Street) New New Substation (Artesia Country Club Tap)-New Substation2 (Artesia 13th Street) 115 kV lineTransfer load from 69 kV to 115 kV New Substation2 (Artesia 13th Street)	SPS	ARTESIA INTERCHANGE (GE C254477) 115/69/13.2KV TRANSFORMER CKT 1	3	6/1/2017
Tap Tolk-Yoakum 230 kV line and CochranLehman Tap 115 kV line New Substation New 230/115 kV transformer at New Substation	SPS	PACIFIC SUB 115KV ARTESIA INTERCHANGE (GE C254477) 115/69/13.2KV TRANSFORMER CKT 1 LEA COUNTY REC-PLAINS INTERCHANGE - YOAKUM COUNTY INTERCHANGE 115KV CKT 1 YOAKUM COUNTY INTERCHANGE (GE M100899) 230/115/13.2KV TRANSFORMER CKT 1		6/1/2018

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
Tap the Lawrence Hill-Swissvale 230 kV line New Substation New 230/115kV transformer at Baldwin Creek (Modification of an existing NTC)	WERE	LAWRENCE HILL (LAWH TX- 3) $230 / 115 / 13.8 \mathrm{KV}$ TRANSFORMER CKT 1		6/1/2019
New 28.8 MVAR capacitor bank at Latexo 138 kV bus	AEP	ALTO (ETEC) 138KV BEREA (ETEC) 138KV GRAPELAND (ETEC) 138KV LATEXO (ETEC) 138KV MUSTANG PRAIRIE 138KV		12/1/2017
Full rebuild of Duncan-Tosco Tap 69 kV line Upgrade wave trap at Duncan	AEP	$\begin{aligned} & \text { DUNCAN - TOSCO 69KV CKT } \\ & 1 \end{aligned}$	3.86	6/1/2018
New 138/13.8 kV transformer at Elk City Move load from 69 kV bus to 138 kV bus	AEP	HAMMMON JCT. 69KVELK CITY (ELKCTY-4) 138/69/13.8KV TRANSFORMER CKT 1 ELK CITY 69KVELK CITY (ELKCTY-4) 138/69/13.8KV TRANSFORMER CKT 1 DILL 69KVELK CITY (ELKCTY- 4) $138 / 69 / 13.8 \mathrm{KV}$ TRANSFORMER CKT 1 CANUTE 2 69KVELK CITY (ELKCTY-4) 138/69/13.8KV TRANSFORMER CKT 1 GRANITE 69KVELK CITY (ELKCTY-4) 138/69/13.8KV TRANSFORMER CKT 1		6/1/2017
Upgrade CTs at Northeastern 138 kV bus	AEP	4OOLOGAH 138.00NORTHEAST STATION 138KV CKT 1		6/1/2017

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
New 14.4 MVAR capacitor bank at Sayre 138 kV bus	AEP	CHEROKEE SW 69KV BULOJ4 138.00 138KV ERICK 138KV SAYRE 138KV SWEETWATER 138KV		6/1/2017
Full rebuild of Tosco Tap-Comanche 69 kV line	AEP	COMANCHE TAP - TOSCO 69KV CKT 1	3.2	6/1/2020
New breaker ring bus at Sallisaw 161 kV bus	GRDA	SALLISAW 69KV SALLISAW CITY \#2 69KV GORE - VIAN 69KV CKT 1		6/1/2017
New 9 MVAR capacitor bank at Blanchard 69 kV bus	WFEC	BLANCHARD 69KV		6/1/2017
New 24 MVAR capacitor bank at Ellsworth 115 kV bus (Modification of an existing NTC)	SUNC	BUSHTON3 115KV EAST HALL TAP 115KV ELLSWORTH 115KV		6/1/2017
Upgrade 69 kV terminal equipment at Collinsville (Modification of an existing NTC)	GRDA	COLLINSVILLE - SKIATOOK TAP 69KV CKT 1		6/1/2017
Full rebuild of Elmore-Paoli 69 kV line (Modification of an existing NTC)	WFEC	ELMORE - PAOLI 69KV CKT 1 BURLINGTON - CHEROKEE SW 69KV CKT 1 ANADARKO - GEORGIA 138KV CKT 1 LINDSAY 69KV BRADLEY 69KV MARLO 69KV	10.8	6/1/2009
Full rebuild of Sara Road-Sunshine Canyon 69 kV line	WFEC	MUSTANG - SUNSHINE CANYON 69KV CKT 1	10	6/1/2020

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
(Modification of an existing NTC)				
Rebuild Hobart City-Roosevelt Tap-Snyder 69 kV line (Modification of an existing NTC)	AEP	HOBART - ROOSEVELT TAP 69KV CKT 1HOBART JUNCTION - OMPA-ALTUS TAMARACK 138KV CKT 1	19.87	6/1/2015
Upgrade 69 kV terminal equipment at CPPXF\#22 (Modification of an existing NTC)	GRDA	CPP TRANSF \#2 - WILGRO 69KV CKT 1		6/1/2015
New Meeker-Lincoln 138 kV line	OGE/ WFEC	EARLSBORO 4138.00- MAUD 138KV CKT 1 FRANKLIN SW - MIDWEST TAP 138KV CKT 1 PHAROAH - WELEETKA 138KV CKT 1 WEST RED HILL 138KV MEEKER 138KV SCISSORTAIL4 138KV GARDENGROVE4 138KV	12	6/1/2017
New 15 MVAR capacitor bank at Harrisburg 69 kV bus	WFEC	VELMA 69KV HARRISBURG 69KV LINDSAY 69KV		6/1/2017
New Knob Hill-Noel 138 kV line Convert Ringwood Jct and Cleo Jct to three breaker ring buses to allow for load to be transferred from the 69 kV buses to the 138 kV buses Close Cleo Jct-Ringwood Jct 69 kV line New 9.6 MVAR capacitor bank at Freedom 69 kV bus (Modification of an existing NTC)	OGE/ WFEC	OMPA-FAIRVIEW 69KV FAIRVIEW 69KV EAGLE CHIEF 69KV CARMEN 69KV HAZELTON 69KV MEDLODGE 69KV BURLINGTON 69KV ALVA - CHEROKEE SW 69KV	0.09	6/1/2017

Reliability Project(s)	$\begin{array}{l}\text { Project } \\ \text { Area (s) }\end{array}$	$\begin{array}{l}\text { Monitored Element(s)* }\end{array}$	$\begin{array}{l}\text { Miles } \\ \text { Added/ } \\ \text { Modified }\end{array}$	Need Date
		$\begin{array}{l}\text { CKT 1 } \\ \text { ALVA - ALVA 69KV CKT 1 } \\ \text { FT SUPPLY - STOCKHOLM2 } \\ \text { 69KV CKT 1 } \\ \text { ALVA - KNOBHILL 69KV CKT } \\ 1\end{array}$		
$\begin{array}{l}\text { Full rebuild Canyon West-Dawn-Panda } \\ \text { Hereford 115 kV line } \\ \text { (Modification of an existing NTC) }\end{array}$	SPS	$\begin{array}{l}\text { CANYON WEST SUB - DAWN } \\ \text { SUB 115KV CKT 1 } \\ \text { DAWN SUB - PANDA }\end{array}$	22.1	$6 / 1 / 2017$
ENERGY SUBSTATION				
HEREFORD 115KV CKT 1				

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
(Modification of an existing NTC)		NEW MEXICO POTASH SUB 69KV		
Rebuild Randall-Canyon East Tap 115 kV line	SPS	CANYON E_TP3115.00 - RANDALL COUNTY INTERCHANGE 115KV CKT 1	3	6/1/2017
New 9 MVAR capacitor bank at Skiatook 69 kV bus	GRDA	SKIATOOK CITY 69KV		6/1/2017
Upgrade 115 kV terminal equipment at Terry County and Wolffort	SPS	TERRY COUNTY INTERCHANGE - WOLFFORTH INTERCHANGE 115KV CKT 1		4/1/2020
New 7 MVAR capacitor bank at Ringwood 69 kV bus	WFEC	RINGWOOD 69KV SANDY_CN 138KV WAKITA4 138.00 138KV C_CITY_138 138.00138 KV		6/1/2018
Tap Woodward-Thistle 345 kV line and Tap Mooreland-Rose Valley 138 kV line New Substation (DeGrasse) New 345/138 kV transformer at DeGrasse New Knobhill-DeGrasse 138 kV line	OGE/ WFEC	SANDY_CN_138 138KV WAKITA4 138KV RENFROW4 138KV BYRON_138 138KV FT SUPPLY - STOCKHOLM2 69KV CKT 1 BUFBEAR2 - STOCKHOLM2 69KV CKT 1	12	6/1/2017
1\% 100 MVA base series line reactor on the Cedar Grove-Linwood 138 kV line	AEP	CEDARGROVE - LINWOOD 138KV CKT 1 CEDARGROVE - SOUTH SHREVEPORT 138KV CKT 1		6/1/2020
New 10 MVAR capacitor bank at SUB 96469 kV bus	OPPD	SUB 993 69KV		6/1/2020

Reliability Project(s)	Project Area (s)	Monitored Element(s)* Miles Added Modified	Need Date	
New 138/69 kV transformer at Driftwood Jct	WFEC	CARMEN 69KV HAZELTON 69KV MEDLODGE 69KV		

Reliability Project(s)	Project Area (s)	Monitored Element(s)*	Miles Added/ Modified	Need Date
		SPRING CREEK JUNCTION $115 K V$ HILLSBORO 115KV		
New 7.2-MVAR capacitor bank at Bopco 115 kV bus	SPS	WOOD DRAW 115KV WOLF CAMP 115KV		$6 / 1 / 2017$

* Monitored Element(s) is/are not the all-inclusive list of needs fixed by the project.

Table 4: 2016 ITPNT Projects

6.3: Project Plan Breakdown

The figures below show a breakdown of the 2016 ITPNT project plan. There are 86 proposed upgrades making up 49 projects in the project plan. Of the 49 proposed projects, 35 will be recommended for issuance of new Notifications to Construct (NTC/NTC-C). Fourteen projects have been identified as needing modified NTCs (NTC Modify).

Figure 6.3: 2016 ITPNT Project Breakdown

The figure below shows the breakdown of new transmission by voltage class in the 2016 ITPNT project plan.

Figure 6.4: 2016 ITPNT New Line by Voltage Class
The figure below illustrates how many miles of existing transmission line that will require a rebuild or reconductor. There are 188 miles of rebuild/reconductor in the 2016 ITPNT project plan.

Miles of Rebuild / Reconductor by Voltage Class
New and Modified NTCs

$$
\begin{aligned}
& \square 115 \mathrm{kV} \\
& \square 69 \mathrm{kV}
\end{aligned}
$$

Figure 6.5: 2016 ITPNT Miles Rebuild/Reconductor by Voltage Class
Upgrades classified as Zonal Reliability are required to meet local planning criteria, which is more stringent than SPP Criteria.

Figure 6.6: 2016 ITPNT Cost Allocation - Zonal Reliability

The table below shows the dollar amount of new and modified projects of the 2016 ITPNT identified by state.

State	New NTC	Modified NTC
Kansas	$\$ 364,080$	$\$ 23,652,048$
Louisiana	$\$ 3,534,979$	$\$ 0$
Nebraska	$\$ 619,277$	$\$ 0$
New Mexico	$\$ 14,706,028$	$\$ 5,283,323$
North Dakota	$\$ 145,656,270$	$\$ 0$
Oklahoma	$\$ 136,008,936$	$\$ 43,988,157$
Texas	$\$ 61,685,035$	$\$ 154,908,919$
Subtotals:	$\$ 362,574,605$	$\$ 227,832,447$

Table 5: 2016 ITPNT Projects by State

The table below shows the net investment amount of new, modified and withdrawn projects of the 2016 ITPNT identified by state.

State	New NTC	Modified NTC (Net Change)	Withdrawn NTC	Net Investment
KS	\$ 364,080	\$ 12,206,413	$(\$ 6,088,561)$	\$ 6,481,932
LA	\$ 3,534,979	\$ 0	(\$ 38,752,697)	(\$ 35,217,718)
MO	\$ 0	\$0	$(\$ 4,329,248)$	$(\$ 4,329,248)$
NE	\$ 619,277	\$ 0	\$ 0	\$ 619,277
NM	\$ 14,706,028	\$ 332,340	\$ 0	\$ 15,038,368
ND	\$ 145,656,270	\$ 0	\$ 0	\$ 145,656,270
OK	\$ 136,008,936	$(\$ 4,985,934)$	(\$ 71,519,747)	\$ 59,503,255
TX	\$ 61,685,035	$(\$ 749,736)$	(\$ 19,534,266)	\$ 41,401,033
Total	\$ 362,574,605	\$ 6,803,083	(\$ 140,224,519)	\$ 229,153,169

Table 6: 2016 ITPNT Net Investment by State
The figure below is a representation of the 2016 ITPNT portfolio of new, modified and withdrawn NTCs by voltage class. For each column, the cost of the new, modified or withdrawn NTC is also displayed.

2016 ITPNT NTC Costs

Figure 6.7: 2016 ITPNT NTC Costs by Voltage Class

The figure below shows the 2016 ITPNT projects represented two ways. The blue column represents the number of upgrades by year. The red column represents the dollars that will be invested to place the projects in service.

Figure 6.8: 2016 ITPNT Upgrades by Need Year and Total Dollars
The figure below shows the cost allocation of upgrades with new NTCs and modified NTCs between upgrades needed for Regional reliability and Zonal reliability.

Figure 6.9: 2016 ITPNT Cost Allocation - Regional vs. Zonal

6.4: Project Details

Oklahoma Area

Figure 6.10: 2016 ITPNT Oklahoma Area Solutions

New Substation (DeGrasse) 138 kV and Knob Hill-DeGrasse 138 kV line

The New Substation (DeGrasse) project is a new substation tapping the Woodward to Thistle 345 kV line and tapping the Mooreland to Rose Valley 138 kV line. The ITPNT need date is identified as June 2017. This project consists of a tap of the double-circuit 345 kV line from Woodward to Thistle to construct the new DeGrasse substation, install any 345 kV needed for a new 345/138 kV transformer, install a new 345/138 kV transformer at the new DeGrasse substation, construct a new 138 kV line from the new DeGrasse substation to Knob Hill, tap the existing 138 kV line from Mooreland to Rose Valley and terminate both end points into the new DeGrasse substation. This project will address the overloads of Fort Supply to Stockholm2 69 kV and Buffalo Bear to Stockholm 269 kV lines.

North Dakota Area

Figure 6.11: 2016 ITPNT North Dakota Solutions

New Substations (Roundup/Kummer Ridge/Plaza) and New Kummer Ridge-Roundup 115 kV line

This project consists of tapping the Charlie Creek to Antelope Valley Station 345 kV line and adding a new substation with a $345 / 115 \mathrm{kV}$ transformer. This project consists of tapping the Charlie Creek to Judson 345 kV line and adding a new substation with a $345 / 115 \mathrm{kV}$ transformer. This project will consist of a new 15-MVAR capacitor bank at the Plaza 115 kV bus and a 115 kV line from Blaisdell to Plaza. The need date for this project is June 2017. This project will address the overloads at Charlie Creek to Watford 230 kV line for the loss of the 345 kV from Charlie Creek to Patent Gate 345 kV line.

Oklahoma Area

Figure 6.12: 2016 ITPNT Oklahoma Solutions

New Static VAR Compensator (SVC) at Arco 138 kV bus

This project consists of a -20/+100 MVAR Static VAR Compensator (SVC) at the Arco 138 kV bus. This project will address 138 kV needs at Arco, Baseline, Comanche and Pinto, and 69 kV needs at Canute, Dill, Hazelton and Granite.

6.5: NERC Reliability Standard TPL-001-4

SPP has provided a separate posting on TrueShare to identify potential violations using the NERC TPL-001-4 standard Table 1 planning events that do not allow for non-consequential load loss or curtailment of firm transmission service. These potential violations have been posted for informational purposes only as described in the 2016 ITPNT Scope.

6.6: Rate Impacts on Transmission Customers

The 2016 ITPNT upgrades were run in the SPP Cost Allocation Forecast and the peak ATRR impact year was shown to be 2020.

Figure 6.13: ATRR Cost Allocation Forecast by Zone of the 2016 ITPNT
As shown in the following chart, the majority of the 2016 ITPNT projects will be cost allocated to the SPP region through the regional rate with a smaller amount allocated to the Pricing Zone hosting the upgrade for years 2016-2018, and the majority is going to the Pricing Zone hosting the upgrade with a smaller amount being cost allocated to the SPP region through the regional rate for the years 2019-2023.

Figure 6.14: Zonal and Regional ATRR allocated in SPP
The peak year ATRR is converted into a monthly impact on a typical 1000 kWh per month Retail Residential ratepayer. This is done by dividing the ATRR zonal impact by the zonal energy usage as adjusted for typical losses.

2016 ITPNT Net Rate Impacts by Zone
1000 kWh per Month Retail Residential Consumer (2020\$ per month)

Figure 6.15: 2016 ITPNT Net Rate Impacts by Zone

SOUTHWEST POWER POOL, INC.

PART III: APPENDICES

SECTION 7: PROJECT MAPS

Figure 7.1: 2016 ITPNT Texas/Louisiana Solutions

Figure 7.2: 2016 ITPNT New Mexico/Texas Solutions

Figure 7.3: 2016 ITPNT North Dakota Solutions

Figure 7.4: 2016 ITPNT West Oklahoma Solutions

Figure 7.5: 2016 ITPNT East Oklahoma Solution

Figure 7.6: 2016 ITPNT Nebraska/Kansas/Missouri Solution

SECTION 8: 2016 ITPNT PROJECT LIST

Posted as a separate document.

This page intentionally left blank.

2016 ITPNT

2016 INTEGRATED TRANSMISSION PLANNING NEAR-TERIM

 Short-Term Reliability Project Report
REVISION HISTORY

DAFE	AUTHOR	CHANGE DESCRIPTHON
$7 / 01 / 2016$	SPP Staff	Posting for MOPC/SPP Board of Directors
$7 / 25 / 2016$	SPP Staff	SPP Board of Directors Approved

Revision History i
Section 1: Short-Term Reliability (STR) Project 1
SPP's Recommendations based on Stakeholder Comments 3
Appendices 4

SECTION l: SHORT-TERM RELIABILITY (STR) PROJECT

In accordance with Attachment Y, Section I.3, of the SPP Tariff, SPP provides the following information:

During the 2016 Integrated Transmission Planning Near-Term (ITPNT) Assessment, SPP performed an $\mathrm{N}-1 \mathrm{AC}$ Contingency Calculation (ACCC) analysis to determine reliability needs utilizing the models developed by SPP through its stakeholder process. The list of all time-sensitive transmission facility overload and voltage needs related to the Short-Term Reliability Project described below (STRP Needs List) can be found on the SPP website. These needs are considered time-sensitive because a solution is needed within three (3) years.

To determine the best solution for the identified time-sensitive reliability needs, SPP evaluated proposed solutions, including those submitted through the Detailed Project Proposal (DPP) process, developed by SPP staff, and proposed by SPP stakeholders through the FERC Order 890 process. SPP tested proposed solutions against every reliability need, including the time-sensitive needs identified in the STRP Needs List. Once solutions were identified for the reliability need(s), reliability metrics (Metrics) were calculated for each solution capable of solving each need. Through use of the Metrics and application of sound engineering judgment, the optimal solution was selected.

SPP proposes the following Short-Term Reliability Project ${ }^{1}$ as the best solution to mitigate the timesensitive needs identified in the STRP Needs List.

New Mustang-Seminole 115 kV line

In the 2016 ITPNT Assessment, SPP determined the new Mustang-Seminole 115 kV line project (Mustang-Seminole Project) was the best solution to mitigate the time-sensitive thermal overload and voltage needs around the San Andreas and Denver City area in West Texas. The MustangSeminole Project consists of a new 17 -mile 115 kV line from the Mustang substation to the Seminole substation. SPP's analysis in the 2016 ITPNT Assessment affirmed this was the best solution to mitigate the 2016 ITPNT Assessment time-sensitive needs. Other solutions evaluated included: 1) constructing a new Mustang-Gaines 230 kV line, 2) constructing a new SeagravesSeminole 115 kV line, 3) constructing a new substation, constructing a new Seminole-Denver City 230 kV line, and installing a new 230/115 kV transformer at the new substation, and 4) constructing a new Mustang-Gaines 230 kV line and installing a new 230/115 kV transformer at the Gaines substation.

[^1]Analysis showed that some alternatives solved fewer needs, while others addressed the same number of needs at a higher cost, and did not provide as much mitigation of the existing needs. Other alternatives addressed the same needs but had less beneficial Metrics. Based on this analysis and the application of sound engineering judgement, the Mustang-Seminole Project was selected.

The thermal reliability needs addressed by the Mustang-Seminole Project are related to the overload of Denver City Interchange S.-San Andreas 115 kV and the San Andreas-Seminole 115 kV lines. In the 2015 ITPNT Assessment, Denver City Interchange S.-San Andreas 115 kV and the San Andreas-Seminole 115 kV lines were not identified as needs. In the 2016 ITPNT Assessment, the Denver City Interchange S.-San Andreas 115 kV and the San Andreas-Seminole 115 kV lines were loaded at 118.4% and 101.5%, respectively.

The voltage reliability needs addressed by the Mustang-Seminole Project are low voltages (below 0.90 per unit) at the following substations: Doss Interchange 115 kV, Flannagan Sub 69 kV, Roz 115 kV, Seminole 115 kV, Oxy West Seminole Tap 115 kV, and Amerada Hess Sub 115 kV.

In the 2016 ITPNT Assessment, the overload of the Denver City Interchange S.-San Andreas 115 kV line occurred in the 2017 summer and winter peak, 2020 summer and winter peak models. The overload of the San Andreas-Seminole 115 kV line occurred in the 2017 and 2020 summer peak models. In the 2016 ITPNT Assessment, the voltage violations at Amerada Hess, Doss Interchange and Roz occurred in the 2017 summer peak, as well as the 2020 light load, summer and winter peak models. The voltage violations at Oxy West Seminole Tap and Seminole occurred in the 2020 light load, summer and winter peak models. The voltage violations at Flannagan Sub occurred in the 2020 summer peak case. The low voltage conditions are attributed to load growth in the local area at the following substations: Roz, Seminole, Doss, Flannagan, and Mustang, which aggregated to 55 MW. The additional 55 MW of load was not modeled in the previous ITPNT Assessments. These needs are considered time-sensitive because a solution is needed within three (3) years.

SPP'S RECOMMENDATIONS BASED ON STAKEHOLDER COMMENTS

On May 18, 2016, SPP published this report to the stakeholder community as required by the SPP Tariff. A 30-day comment period was opened and all stakeholder comments are detailed in Appendix 3 of this report.

Project 1: New Mustang-Seminole 115 kV line
No comments were received.

SPP's Recommendation: The project should be designated as a STR Project.

APPENDICES

Legend	Description
Orange Cells	These are time-sensitive needs

General Description	Season	Scenario	Overload/Voltage Need	Monitored Element	Contingency Name
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	FLANNAGAN SUB 69KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Voltage	FLANNAGAN SUB 69KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Voltage	FLANNAGAN SUB 69KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	5	Voltage	AMERADA HESS CO2 SUB 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Light Load	CBA	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Serninole 115 kV line	2020 Summer Peak	5	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	5	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Serninole 115 kV line	2020 Winter Peak	CBA	Voltage	AMERADA HESS CO2 SUB 115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	0	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	5	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	CBA	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Light Load	CBA	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Voltage	DOSS INTERCHANGE 11.5KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	0	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	5	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Serninole 115 kV line	2020 Winter Peak	CBA	Voltage	DOSS INTERCHANGE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Light Load	CBA	Voltage	OXY_WSTSEM 3115.00 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	OXY_WSTSEM 3115.00115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Voltage	OXY_WSTSEM 3115.00115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Serninole 115 kV line	2020 Summer Peak	CBA	Voltage	OXY_WSTSEM 3115.00115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	CBA	Voltage	OXY_WSTSEM 3115.00115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	5	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Light Load	CBA	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	5	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	CBA	Voltage	ROZ 3115 KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Light Load	CBA	Voltage	SEMINOLE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Voltage	SEMINOLE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Voltage	SEMINOLE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Voltage	SEMINOLE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	CBA	Voltage	SEMINOLE 115KV	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	0	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	5	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	CBA	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 11.5 kV line	2017 Winter Peak	CBA	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	0	Overioad	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Overioad	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	CBA	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Winter Peak	5	Overload	DENVER CITY INTERCHANGE S. - SAN_ANDS_TP3115.00 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2017 Summer Peak	0	Overload	SAN_ANDS_TP3115.00-SEMINOLE 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1
New Mustang-Seminole 115 kV line	2020 Summer Peak	5	Overload	SAN_ANDS_TP3115.00-SEMINOLE 115KV CKT 1	MUSTANG STATION - SEMINOLE 230KV CKT 1

2016 ITP Near-Term (ITPNT) Short-Term Reliability Projects

In accordance with Attachment Y , Section I. 3 of the SPP Tariff, SPP is providing the information related to timesensitive needs and Short-Term Reliability Projects resulting from the 2016 ITPNT study. This information can be found here.

Stakeholders may submit comments related to this posting through 12:00am (midnight) on Friday, June 17, 2016 through the SPP Request Management System (RMS).

FILE Information

FILE	DESCRIPTION
2016 ITPNT Short-Term Reliability Projects.docx	Narrative describing the Short-Term Reliability Projects
2016 ITPNT Short-Term Reliability Needs List.xlsx	Spreadsheet identifying the needs associated with the Short-Term Reliability Projects

The previously posted 2016 ITPNT Needs Assessments (Scenarios 0,5 and CBA) can be found on TrueShare under "Integrated Transmission Planning - Confidential and Protected Material and or Critical Energy Infrastructure Information-Do Not Release $\rightarrow 2016$ ITPNT \rightarrow " in the "2016 ITPNT Needs Assessment" folder.

Information for obtaining the 2016 ITPNT models
In order to obtain access to these documents in TrueShare, stakeholders must provide SPP with a signed confidentiality agreement. Instructions can be obtained by clicking on the link. Please submit these forms via RMS through the "Request TrueShare Access" Quick Pick. After the executed confidentiality agreement is received, an account will be created for the requester on TrueShare. An email with instructions for logging on will be sent to requester. For those that already have a TrueShare account, no additional action is necessary.

As a reminder, instructions for accessing the model information can be found on the SPP website here.

Helpful Links

- Transmission Owner Selection Process (formerly Order 1000) home page
- Order 1000 Documents
- Detailed Project Proposal (DPP) page
- SPP Transmission Planning Page
- All notice postings previously on the SPP.org home page are now on this page
- ITP Postings (formerly in Order 1000 Documents folder) here
- SPP Request Management System (SPP RMS) is the preferred method for inquiries and data submissions. Click on this link and then "Register Now" if you are not already registered.
- Choose Quick Pick "Integrated Transmission Planning (ITP)"
- Choose Request Type "ITP Submittals"
- Choose one of the following from the Subtype 1 field:
- Project Inquiry
- Modeling Inquiry
- DPP Submittal
- "Request TrueShare Access" Quick Pick for access to TrueShare for models
- SPP RMS is the preferred method for receiving all inquiries and solution submittals.

2016 ITP Near-Term Short-Term Reliability Projects - COMMENTS

Short-Term Reliability Project: New Mustang-Seminole 115 kV line

No comments were received.

SPP

Notification to Construct

August 17, 2016

Mr. John Fulton
Southwestern Public Service Company
P.O. Box 1261

Amarillo, TX 79105
RE: Notification to Construct Approved Reliability Network Upgrades
Dear Mr. Fulton,
Pursuant to Section 3.3 of the Southwest Power Pool, Inc. ("SPP") Membership Agreement and Attachments O and Y of the SPP Open Access Transmission Tariff ("OATT"), SPP provides this Notification to Construct ("NTC") directing Southwestern Public Service Company ("SPS"), as the Designated Transmission Owner, to construct the Network Upgrade(s).

On July 26, 2016, the SPP Board of Directors approved the Network Upgrade(s) listed below to be constructed.

New Network Upgrades

Project ID: 31021
Project Name: Line - Mustang - Seminole 115 kV Ckt 1 New Line
Need Date for Project: 6/1/2017
Estimated Cost for Project: \$14,323,305
Network Upgrade ID: 51478
Network Upgrade Name: Mustang - Seminole 115 kV Ckt 1 New Line
Network Upgrade Description: Construct new 115 kV line from Mustang to Seminole.
Network Upgrade Owner: SPS
MOPC Representative(s): William Grant
TWG Representative: John Fulton
Categorization: Regional reliability
Network Upgrade Specification: All elements and conductor must have at least an emergency rating of 240 MVA .
Network Upgrade Justification: Upgrade identified in the Needs Assessment of the 2016 ITPNT as needed for regional reliability.

Estimated Cost for Network Upgrade (current day dollars): \$10,715,275
Cost Allocation of the Network Upgrade: Base Plan
Estimated Cost Source: SPP
Date of Estimated Cost: 2/24/2016
Network Upgrade ID: 51479
Network Upgrade Name: Mustang 115 kV Terminal Upgrades
Network Upgrade Description: Install terminal upgrades at Mustang 115 kV substation needed to accommodate termination of new line from Seminole.
Network Upgrade Owner: SPS
MOPC Representative(s): William Grant
TWG Representative: John Fulton
Categorization: Regional reliability
Network Upgrade Specification: All elements and conductor must have at least an emergency rating of 240 MVA .
Network Upgrade Justification: Upgrade identified in the Needs Assessment of the 2016 ITPNT as needed for regional reliability.
Estimated Cost for Network Upgrade (current day dollars): \$1,591,690
Cost Allocation of the Network Upgrade: Base Plan
Estimated Cost Source: SPS
Date of Estimated Cost: 2/24/2016
Network Upgrade ID: 51480
Network Upgrade Name: Seminole 115 kV Terminal Upgrades
Network Upgrade Description: Install terminal upgrades at Seminole 115 kV substation needed to accommodate termination of new line from Mustang.
Network Upgrade Owner: SPS
MOPC Representative(s): William Grant
TWG Representative: John Fulton
Categorization: Regional reliability
Network Upgrade Specification: All elements and conductor must have at least an emergency rating of 240 MVA .
Network Upgrade Justification: Upgrade identified in the Needs Assessment of the 2016 ITPNT as needed for regional reliability.
Estimated Cost for Network Upgrade (current day dollars): \$2,016,340
Cost Allocation of the Network Upgrade: Base Plan
Estimated Cost Source: SPS
Date of Estimated Cost: 2/24/2016
Project ID: 31052
Project Name: Multi - Tolk Yoakum Tap 230/115 kV Substation and Transformer

Need Date for Project: 6/1/2018
Estimated Cost for Project: \$11,670,196
Network Upgrade ID: 51550
Network Upgrade Name: Tolk - Yoakum Tap 230/115 kV Substation and Transformer Network Upgrade Description: Tap the intersection of the 230 kV line from Tolk to Yoakum and the 115 kV line from Cochran to Lehman Tap and terminate all four ends into new substation. Install new 230/115 kV transformer at new substation.
Network Upgrade Owner: SPS
MOPC Representative(s): William Grant
TWG Representative: John Fulton
Categorization: Regional reliability
Network Upgrade Specification: All elements and conductor must have at least an emergency rating of 308 MVA , but are not limited to that amount.
Network Upgrade Justification: Upgrade identified in the 2016 ITPNT Needs Assessment as needed for regional reliability.
Estimated Cost for Network Upgrade (current day dollars): \$11,670,196
Cost Allocation of the Network Upgrade: Base Plan
Estimated Cost Source: SPS
Date of Estimated Cost: 5/13/2016

Commitment to Construct

Please provide to SPP a written commitment to construct the Network Upgrade(s) within 90 days of the date of this NTC, in addition to providing a construction schedule and an updated $\pm 20 \%$ cost estimate, NTC Project Estimate, in the Standardized Cost Estimate Reporting Template for the Network Upgrade(s). Failure to provide a sufficient written commitment to construct as required by the SPP OATT could result in the Network Upgrade(s) being assigned to another entity.

Mitigation Plan

The Need Date represents the timing required for the Network Upgrade(s) to address the identified need. Your prompt attention is required for formulation and approval of any necessary mitigation plans for the Network Upgrade(s) included in the Network Upgrade(s) if the Need Date is not feasible. Additionally, if it is anticipated that the completion of any Network Upgrade will be delayed past the Need Date, SPP requires a mitigation plan be filed within 60 days of the determination of expected delays.

Notification of Commercial Operation

Please submit a notification of commercial operation for each listed Network Upgrade to SPP as soon as the Network Upgrade is complete and in-service. Please provide SPP with the actual

SPP-NTC-200407

costs of these Network Upgrades as soon as possible after completion of construction. This will facilitate the timely billing by SPP based on actual costs.

Notification of Progress

On an ongoing basis, please keep SPP advised of any inability on SPS's part to complete the approved Network Upgrades). For project tracking, SPP requires SPS to submit status updates of the Network Upgrades) quarterly in conjunction with the SPP Board of Directors meetings. However, SPS shall also advise SPP of any inability to comply with the Project Schedule as soon as the inability becomes apparent.

All terms and conditions of the SPP OATT and the SPP Membership Agreement shall apply to this Project, and nothing in this NTC shall vary such terms and conditions.

Don't hesitate to contact me if you have questions or comments regarding these instructions. Thank you for the important role that you play in maintaining the reliability of our electric grid.

Sincerely,

Lanny Nickell
Vice President, Engineering
Phone: (501) 614-3232 • Fax: (501) 482-2022• lnickell@spp.org

$$
\begin{array}{ll}
\text { cc: } & \text { Carl Monroe - SPP } \\
& \text { Antoine Lucas - SPP } \\
& \text { William Grant - SPS }
\end{array}
$$

Mr. Lanny Nickell, Vice President
201 Worthen Drive
Little Rock, AR 72223-4936

David Hudson

President,
Southwestern Public Service Company

600 S. Tyler Street
Amarillo, TX 79101
David.hudson@xcelenergy.com
Phone: 806.378.2824

November 10, 2016

RE: SPP-NTC-200407, dated August 17, 2016

Dear Mr. Nickell:
Southwestern Public Service Company ("SPS") hereby responds to the Southwest Power Pool ("SPP") Notification to Construct ("NTC") dated August 17, 2016, referred to as SPP-NTC-200407. The NTC seeks a commitment from SPS to construct 2 new projects and 4 new network upgrades that have been assigned to SPS. As detailed below, this response will constitute SPS's commitment, under Attachment O, Section VI of the SPP Open Access Transmission Tariff, to construct the projects identified in SPP-NTC-200407.

The SCERT estimates will be provided separately through TAGIT by the date required in the NTC.

As SPS completes its detailed design and engineering and internal capital budgeting processes for the upgrades, updated project scheduling information will be provided to the SPP through the Quarterly Tracking reports.

As with any Transmission Owner receiving an SPP NTC for new transmission projects, SPS's. commitment to construct the SPP-NTC-200407 projects listed below also include its intent to work with SPP to review the scope and configuration of any project should the subsequent development of a future contingency or change in circumstance affect the design, scope, or need for a project as currently planned. Such contingencies could include, but would not be limited to, SPS's obtaining all necessary local, state, and federal governmental approvals, the necessary corporate governance approvals within Xcel Energy for the related capital expenditures, adequate regulatory treatment that ensure cost recovery, or the option to assign the construction of a project(s) to an SPS affiliate, with SPP's approval. Also, wholesale customers on the SPS system are changing their system resource and operation plans, which may drive additional SPS work with SPP to address any relevant changes in circumstance which may affect certain associated projects.

Modified Network Upgrades:

Upgrade ID: 51478

Upgrade Description: Construct new 115 kV line from Mustang to Seminole.
Upgrade ID: 51479
Upgrade Description: Install terminal upgrades at Mustang 115 kV substation needed to accommodate termination of new line from Seminole.

Upgrade IID: 51480
Upgrade Description: Install terminal upgrades at Seminole 115 kV substation needed to accommodate termination of new line from Mustang.

Upgrade IID: 51550
Upgrade Description: Tap the intersection of the 230 kV line from Tolk to Yoakum and the 115 kV line from Cochran to Lehman Tap and terminate all four ends into new substation. Install new 230/115 kV transformer at new substation.

Finally, SPS would note that, to the extent that any significant changes in future loads or load forecasts occur that may affect the planned configurations or need for new and modified upgrade project numbers 51478, 51479, 51480 and 51550, SPS will work with SPP to re-evaluate these projects. Additionally, for any project where SPS shows an inservice date beyond the desired Need Date reflected in the NTC, SPS will provide mitigations within 60 days of the date of this letter.

Should there be any questions, please feel free to contact Mr. John Fulton of SPS.

Sincerely,

David Hudson
President, SPS

Cc: Jason Davis - SPP
Teresa Mogensen, Ian Benson, Bruce Cude, Bill Grant, Gerald Deaver, David Hudson, Tony Jandro - Xcel Energy

Mustang to Seminole CCN
 Schematic

XcelEnergy
SOUTHWESTERN PUBLIC SERVI CE COMPANY

Siting and Land Rights

790 South Buchanan Street Amarillo, TX 79101
Telephone: 378-2713
Facsimile: 806-378-2724

October 23, 2018

VIA FIRST CLASS MAIL
«Landowner»
«Address_1»
«City», «State» «Zip»
Dear Landowner:

Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)

PUBLIC UTILITY COMMISSION OF TEXAS DOCKET NO. 48724

Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new 115-kV transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The Mustang Substation will have a new $115-\mathrm{kV}$ terminal added to the south of the $115-\mathrm{kV}$ bus for the new $115-\mathrm{kV}$ line. The existing Seminole Substation will have a new $115-\mathrm{kV}$ terminal added to the south of the $115-\mathrm{kV}$ bus for the new $115-\mathrm{kV}$ line.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily single-circuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit. The proposed transmission line will be constructed primarily on new right-of-way with a proposed easement width of 70 feet. In some circumstances, a wider right-of-way easement may be necessary, but these locations and easement widths cannot be determined until a route for the Proposed Project is approved and surveyed. In addition to the permanent easement, for construction of the route selected by the PUC, SPS will purchase a 30 foot temporary easement adjacent to the route, and an additional $100 \mathrm{ft} . \mathrm{x} 300 \mathrm{ft}$. temporary easement for each angle that is 45 degrees or more.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Your land may be directly affected in this docket. If one of SPS's routes is approved by the PUC, SPS will have the right to build a facility, which may directly affect your land. This docket will not determine the value of your land or the value of an easement if one is needed by SPS to build the facility. If you have questions about the transmission line you may contact Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868. A map of SPS's proposed routes is included with this letter, along with a written description of the segments to be used for the alternative routes. Larger, more detailed routing maps may be viewed at SPS's offices at 790 South Buchanan Street, $4^{\text {th }}$ Floor, Amarillo, Texas 79101. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

All routes and route segments included in this notice are available for selection and approval

 by the Public Utility Commission of Texas.The PUC has a brochure entitled "Landowners and Transmission Line Cases at the PUC" that provides basic information about how you may participate in this docket, and how you may contact the PUC. Please read this brochure carefully. The brochure includes sample forms for making comments and for making a request to intervene as a party in this docket. Copies of the brochure are enclosed and are also available from Nisha Fleischman at 806-378-2713 or may be downloaded from the PUC's website at http://www.puc.texas.gov/. The only way to fully participate in the PUC's decision on where to locate the transmission line is to intervene in the docket. It is important for an affected person to intervene because the utility is not obligated to keep affected persons informed of the PUC's proceedings and cannot predict which route may or may not be approved by the PUC.

In addition to the contacts listed in the brochure, you may call the PUC's Customer Assistance Hotline at 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. If you wish to participate in this proceeding by becoming an intervenor, the deadline for intervention in the proceeding is December 7th, 2018, and the PUC should receive a letter from you requesting intervention by that date.

Mail the request for intervention and 10 copies of the request to:
Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Ave.
P.O. Box 13326

Austin, Texas 78711-3326
Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket. The enclosed brochure explains how you can access these filings.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures

PRIMARY ALTERNATIVE ROUTES MUSTANG TO SEMINOLE 115-kV PROJECT

Route	Composition	Length (miles)
A	$1 a-3-13-16-18-20-32-37-39-41-44-45-47-48-51-54-55$	21.70
B	$1 a-3-13-16-18-25-33-36-40-41-44-45-47-48-49-52-54-55$	19.32
C	$1 a-3-13-16-24-28-33-38-39-41-44-45-47-59-60-52-54-55$	19.10
D	$1 a-3-13-16-18-25-33-36-57-43 b-58-60-50-53-55$	19.19
E	$1 a-3-13-16-24-27-30-43 a-43 b-58-60-50-53-55$	17.30
F	$1 a-3-13-16-19-21-22-26-43 a-43 b-58-60-52-54-55$	17.38
G	$1 a-3-13-17 a-17 b-21-22-26-43 a-43 b-58-60-52-54-55$	17.34
H	$1 a-2 a-4-6-12-22-26-43 a-43 b-43 c-47-48-49-52-54-55$	19.49
I	$1 a-2 a-56-17 b-21-22-26-43 a-43 b-58-60-50-53-55$	17.36
J	$1 a-2 a-4-6-12-22-26-43 a-43 b-58-60-52-54-55$	17.48

Segment 1a

Segment 1a originates in the southwest corner of Xcel Energy's existing Mustang Substation located adjacent to Golden Spread Electric Cooperative's power plant, approximately 0.65 mile northeast of the County Road (CR) 355 and CR 390 intersection in Section 887 in Yoakum County, Texas. Segment 1a exits the substation and extends west for approximately 0.11 mile, installed as a second circuit on the approved Mustang to Shell $115-\mathrm{kV}$ transmission line, and parallel to the south side of an existing transmission line. It turns to the south and extends south for approximately 0.50 mile, as a second circuit on the approved Mustang to Shell transmission line ${ }^{1}$, and parallel to the east side of another existing transmission line. The segment then turns and travels east for approximately .11 mile, paralleling the north side of the approved Mustang to Shell transmission line, which is located north of another existing transmission line, along the southern boundary of Section 887. The segment terminates at its intersection with Segments 2a and 3 , approximately 0.40 mile east of the CR 355 and CR 390 intersection.

Segment 2a

Segment 2a originates at its intersection with Segments 1a and 3, north of CR 390, on the north side of the approved Mustang to Shell 115-kV transmission line and another existing transmission line, along the southern boundary of Section 887, approximately 0.40 mile east of the CR 355 and CR 390 intersection. It travels east, paralleling the north side of the approved Mustang to Shell 115-kV transmission line for approximately 0.42 mile before it angles to the northeast and parallels the Mustang to Shell transmission line for an additional 0.11 mile. The segment then turns east and extends for approximately 0.12 mile, immediately crossing the approved Mustang to Shell $115-\mathrm{kV}$ transmission line and then CR 365 , and enters Section 886 . The segment then proceeds east for approximately 0.38 mile, turns to the south and extends for approximately 0.13 mile as it crosses an existing transmission line, the southern boundary of Section 886, and CR 390, and terminates at its intersection with Segments 4 and 56, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29.

[^2]
Segment 3

Segment 3 originates at its intersection with Segments 1a and 2a north of CR 390, on the north side of the approved Mustang to Shell 115-kV transmission line, another existing transmission line, and the southern boundary of Section 887, approximately 0.4 mile east of the CR 355 and CR 390 intersection. The segment proceeds south for approximately 0.42 mile as it crosses the approved Mustang to Shell 115-kV transmission line, the other existing transmission line, CR 390, and extends through Section 28 to the Yoakum/Gaines County Line. The segment terminates at its intersection with Segment 13, on the Yoakum/Gaines County Line at the northwest corner of Section 25, approximately 0.55 mile southeast of the CR 355 and CR 390 intersection.

Segment 4

Segment 4 originates at its intersection with Segments 2a and 56, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29. The segment travels east, paralleling the south side of CR 390 for approximately 2.0 miles, and terminates at its intersection with Segment 6 , along the northern boundary of Section 29, approximately 0.4 mile east of the CR 415 and CR 390 intersection.

Segment 6

Segment 6 originates at its intersection with Segment 4 on the south side of CR 390, along the northern boundary of Section 29, approximately 0.4 mile east of the CR 415 and CR 390 intersection. The segment proceeds south for approximately 0.36 mile through Section 29 and terminates at its intersection with Segment 12, on the Yoakum/Gaines County Line, at the northwest corner of Section 22, approximately 0.54 mile southeast of the CR 415 and CR 390 intersection.

Segment 12

Segment 12 originates at its intersection with Segment 6, on the Yoakum/Gaines Country Line, at the northwest corner of Section 22, approximately 0.54 mile southeast of the CR 415 and CR 390 intersection. The segment travels to the south for approximately 1.0 mile, paralleling the western boundary of Section 22, and crosses State Highway (SH) 83 into Section 15. The segment then continues south for approximately 1.0 mile, paralleling the western boundary of Section 15, and terminates at its intersection with Segments 21 and 22 in the southwest corner of Section 15, approximately 2.44 miles southeast of the CR 211 and SH 83 intersection.

Segment 13

Segment 13 originates at its intersection with Segment 3, on the Yoakum/Gaines County Line at the northwest corner of Section 25, approximately 0.55 mile southeast of the CR 355 and CR 390 intersection. The segment travels to the south for approximately 0.16 mile, paralleling the western boundary of Section 25, and then crosses McKenzie Draw. It then continues south for approximately 0.82 mile, paralleling the western boundary of Section 25 , and terminates at its intersection with Segments 16 and 17a in the southwest corner of Section 25, on the north side of SH 83 approximately 0.99 mile west of the CR 211 and SH 83 intersection.

Segment 16

Segment 16 originates at its intersection with Segments 13 and 17a in the southwest corner of Section 25 , on the north side of SH 83, approximately 0.99 mile west of the CR 211 and SH 83 intersection. The segment extends south for approximately 1.02 miles as it crosses SH 83 and parallels the western boundary of Section 12. It terminates at its intersection with Segments 18, 19 , and 24 , in the southwest corner of Section 12 , approximately 1.36 miles southwest of the CR 211 and SH 83 intersection.

Segment 17a

Segment 17a originates at its intersection with Segments 13 and 16 in the southwest corner of Section 25 , on the north side of SH 83, approximately 0.99 mile west of the CR 211 and SH 83 intersection. The segment travels to the east for approximately .97 mile, paralleling the north side of SH 83, and terminates at its intersection with Segments 17b and 56, northwest of the SH 83 and CR 211 intersection in the southeast corner of Section 25.

Segment 17b

Segment 17b originates at its intersection with Segments 17 a and 56 , northwest of the SH 83 and CR 211 intersection in the southeast corner of Section 25. The segment extends south for approximately 0.20 mile as it crosses SH 83 and parallels the west side of CR 211 before it angles to the southeast and proceeds for approximately 0.09 mile, where it crosses CR 211 into Section 13. The segment then turns back to the south and parallels the east side of CR 211 for approximately 0.72 mile and terminates at its intersection with Segments 19 and 21, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection.

Segment 18

Segment 18 originates at its intersection with Segments 16, 19, and 24, in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment proceeds west for approximately 0.33 mile, as it enters Section 11, and parallels the southern boundary of Section 11. The segment then angles and extends southwest for approximately 0.15 mile, crossing into Section 8 . The segment then turns and travels west for approximately 0.54 mile, paralleling the northern boundary of Section 8 and terminates at its intersection with Segments 20 and 25, in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection.

Segment 19

Segment 19 originates at its intersection with Segments 16,18 , and 24 , in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment travels east for approximately 1.01 miles, paralleling the southern boundary of Section 12 , crossing CR 211, and entering Section 13 . Here it terminates at its intersection with Segments 17b and 21, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection.

Segment 20

Segment 20 originates at its intersection with Segments 18 and 25 , in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection. The segment proceeds west, immediately entering Section 9, and paralleling the northern boundary of Section 9 for approximately 1.0 mile. It then enters Section 41, and parallels the northern boundary of

Section 41 for approximately 0.5 mile where it crosses an existing transmission line then continues west paralleling the northern boundary of Section 41 for approximately 0.5 mile and enters Section 42. Segment 20 then turns to the south and parallels the eastern boundary of Section 42 for approximately 0.44 mile where it approaches the eastern/northeastern side of the curve on SH 214. Here it angles to the southeast and parallels SH 214 for approximately 0.12 mile as it crosses into Section 41 before angling to the south. It then travels south and parallels the east side of SH 214 for approximately 0.46 mile as it crosses CR 226 and enters Section 309. It then continues south, paralleling the east side of SH 214 for approximately 2.0 miles along the western boundaries of Section 309 and Section 310 where it crosses CR 222 and terminates at its intersection with Segment 32, southeast of the SH 214 and CR 222 intersection in the northwest corner of Section 311.

Segment 21

Segment 21 originates at its intersection with Segments 17b and 19, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection. It extends east for approximately 1.68 miles, paralleling the southern boundaries of Sections 13 and 14 and crosses McKenzie Draw. Segment 21 then continues east an additional 0.32 mile, paralleling the southern boundary of Section 14, enters Section 15 and terminates at its intersection with Segments 12 and 22 , in the southwest corner of Section 15 approximately 2.23 miles southeast of the SH 83 and CR 211 intersection.

Segment 22

Segment 22 originates at its intersection with Segments 12 and 21, in the southwest corner of Section 15 approximately 2.23 miles southeast of the SH 83 and CR 211 intersection. It travels south, immediately enters the northwest corner of Section 4 and parallels the western boundary of Section 4 for approximately 0.9 mile where it crosses McKenzie Draw, then parallels the western boundary of Section 4 an additional 0.1 mile where it crosses CR 226 and enters the northwest corner of Section 208. Segment 22 then continues south, paralleling the western boundary of Section 208 for approximately 0.11 mile before angling southwest and extending approximately 0.11 mile into Section 240 . The segment then turns and travels south for approximately 0.3 mile, paralleling the eastern boundary of Section 240 and terminating at its intersection with Segment 26, along the eastern boundary of Section 240 approximately 2.04 miles southeast of the CR 226 and CR 211 intersection.

Segment 24

Segment 24 originates at its intersection with Segments 16,18 and 19, in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment travels south, immediately enters Section 7 and parallels the western boundary of Section 7 for approximately 0.27 mile before angling southwest and extending for approximately 0.13 mile into Section 8. Segment 24 then turns south and parallels the eastern boundary of Section 8 for approximately 0.13 mile where it crosses a tributary of McKenzie Draw and continues south, parallel to the eastern boundary of Section 8, an additional 0.50 mile and crosses CR 226 into Section 275. The segment then continues south for approximately 1.0 mile, paralleling the west side of CR 213 and entering Section 276 . Segment 24 then continues south for approximately 1.01 miles, parallel to the eastern boundary of Section 276 , crosses CR 222 into Section 277 and terminates at its intersection with Segments 27 and 28, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection.

Segment 25

Segment 25 originates at its intersection with Segments 18 and 20, in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection. It travels south, paralleling the western boundary of Section 8 for approximately 0.75 mile, crosses a tributary of McKenzie Draw, then parallels the western boundary of Section 8 for an additional 0.25 mile and crosses CR 226 into the northwest corner of Section 275 . Segment 25 then continues south for approximately 2.0 miles, paralleling the western boundaries of Section 275 and Section 276, and crosses CR 222 into Section 277, where it terminates at its intersection with Segment 28 and 33, southeast of the CR 215 and CR 222 intersection in the northwest corner of Section 277.

Segment 26

Segment 26 originates at its intersection with Segment 22, along the eastern boundary of Section 240 approximately 2.04 miles southeast of the CR 226 and CR 211 intersection. It proceeds south for approximately 1.49 miles, paralleling the eastern boundaries of Section 240 and Section 239, and terminates at its intersection with Segments 30 and 43a on the north side of CR 222, in the southeast corner of Section 239 approximately 2.0 miles east of the CR 222 and CR 211 intersection.

Segment 27

Segment 27 originates at its intersection with Segments 24 and 28, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection. The segment proceeds east, immediately crossing into Section 272 and parallels the south side of CR 222 for approximately 1.0 mile as it crosses CR 211 and enters Section 243. The segment then continues east paralleling the south side of CR 222 for approximately 0.97 mile before angling northeast and extending approximately 0.04 mile as it crosses to the north side of CR 222 and into Section 242. It then terminates at its intersection with Segment 30, in the southeast corner of Section 242, approximately 1.0 mile east of the CR 222 and CR 211 intersection.

Segment 28

Segment 28 originates at its intersection with Segments 24 and 27, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection. The segment travels west for approximately 0.98 mile, paralleling the south side of CR 222 and terminates at its intersection with Segments 25 and 33, in the northwest corner of Section 277, southeast of the CR 222 and CR 215 intersection.

Segment 30

Segment 30 originates at its intersection with Segment 27, in the southeast corner of Section 242, approximately 1.0 mile east of the CR 222 and CR 211 intersection. It travels east for approximately 1.0 mile, immediately crossing into Section 239 , then paralleling the north side of CR 222 and terminates at its intersection with Segments 26 and 43a, in the southeast corner of Section 239, approximately 2.0 miles east of the CR 222 and CR 211 intersection.

Segment 32

Segment 32 originates at its intersection with Segment 20, southeast of the SH 214 and CR 222 intersection in the northwest corner of Section 311. It travels south approximately 0.54 mile, paralleling the east side of SH 214 to the SH 214 and CR 219 intersection. It then curves southeast and parallels the east-northeast side of SH 214 for approximately 0.47 mile and enters
the northwestern portion of Section 312. It then travels southeast parallel to the east-northeast side of SH 214 for approximately 0.47 mile and crosses an existing transmission line. It then continues southeast, parallel to the east-northeast side of SH 214 for an additional 0.81 mile as it crosses the southwestern corner of Section 305 and enters Section 304. The segment then terminates at its intersection with Segment 37 on the east-northeast side of SH 214, approximately 0.56 mile northwest of the SH 214 and CR 218 intersection.

Segment 33

Segment 33 originates at the intersection with Segment 25 and 28, southeast of the CR 215 and CR 222 intersection in the northwest corner of Section 277. It travels south for approximately 1.98 miles, parallel to the east side of CR 215 along the western boundaries of Section 277 and Section 278. The segment then terminates at its intersection with Segments 36 and 38, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection.

Segment 36

Segment 36 originates at its intersection with Segment 33 and 38, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection. It travels to the east for approximately 0.98 mile, paralleling the southern boundary of Section 278 and terminates at its intersection with Segments 40 and 57 in the southeast corner of Section 278, approximately 1.45 miles northwest of the CR 211 and CR 216 intersection.

Segment 37

Segment 37 originates at its intersection with Segment 32 on the east-northeast side of SH 214 in the northwest corner of Section 304, approximately 0.56 mile northwest of the SH 214 and CR 218 intersection. It travels southeast for approximately 1.33 miles, paralleling the east-northeast side of SH 214 across Section 304. The segment then crosses into the northeast corner of Section 303 and continues southeast for approximately 0.20 mile, before crossing CR 215 and entering Section 280. The segment then terminates at its intersection with Segments 38 and 39, east of the SH 214 and CR 215 intersection in the northwestern portion of Section 280.

Segment 38

Segment 38 originates at its intersection with Segment 33 and 36, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection. It travels south, crossing into Section 279, and parallels the east side of CR 215 for approximately 1.17 miles along the western boundaries of Section 279 and Section 280 and terminates at its intersection with Segments 37 and 39 in the northwestern portion of Section 280 , east of the SH 214 and CR 215 intersection.

Segment 39

Segment 39 originates at its intersection with Segments 37 and 38 in the northwestern portion of Section 280, east of the SH 214 and CR 215 intersection. It travels southeast and parallels the east-northeast side of SH 214 for approximately 0.46 mile, then turns to the east and extends across Section 280 for approximately 0.69 mile where it terminates at its intersection with Segments 40 and 41 at the eastern boundary of Section 280 , approximately 1.04 miles southeast of the SH 214 and CR 215 intersection.

Segment 40

Segment 40 originates at its intersection with Segments 36 and 57 in the southeast corner of Section 278, approximately 1.4 miles northwest of the CR 211 and CR 216 intersection. It travels south for approximately 1.52 miles, immediately crossing into Section 279 and paralleling the eastern boundaries of Section 279 and Section 280. It then terminates at its intersection with Segments 39 and 41 along the eastern boundary of Section 280, approximately 1.04 miles southeast of the SH 214 and CR 215 intersection.

Segment 41

Segment 41 originates at its intersection with Segments 39 and 40 along the eastern boundary of Section 280, approximately 1.04 miles southeast of the SH 214 and CR 215 intersection. It travels south and parallels the eastern boundary of Section 280 for approximately 0.5 mile to the southern boundary of Section 280. From here it turns east, crosses into Section 269, and parallels the southern boundary of Section 269 approximately 0.5 mile. It then terminates at its intersection with Segment 44 along the southern boundary of Section 269, approximately 1.1 miles southwest of the CR 211 and CR 216 intersection.

Segment 43a

Segment 43a originates at its intersection with Segments 26 and 30, in the southeast corner of Section 239 approximately 2.0 miles east of the CR 222 and CR 211 intersection. It extends south for approximately 2.04 miles, immediately crossing CR 222 and parallels the eastern boundaries of Section 238 and Section 237, crossing into Section 236. It then terminates at its intersection with Segments 43b and 57, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection.

Segment 43b

Segment 43b originates at its intersection with Segments 43a and 57, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection. It travels south for approximately 0.98 mile, paralleling the eastern boundary of Section 236, where it angles to the southeast and extends for approximately 0.04 mile as it crosses CR 216 into the northwest corner of Section 213. The segment then turns back to the south and extends approximately 0.98 mile paralleling the western boundary of Section 213 . It then turns to the west and extends approximately .01 mile as it crosses into the southeast corner of Section 235 and terminates at its intersection with Segments 43c and 58, approximately 1.4 miles northwest of the CR 205 and CR 212 intersection.

Segment 43c

Segment 43c originates at its intersection with Segments 45 and 47 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection. It extends east, immediately crossing into Section 234, and parallels the northern boundary of Section 234 for approximately 0.60 mile, where it angles northeast and extends for approximately 0.1 mile as it crosses into Section 235 . The segment then turns back to the east and parallels the southern boundary of Section 235 approximately 0.27 mile and terminates at its intersection with Segments 43b and 58, in the southeast corner of Section 235 approximately 2.2 miles southeast of the CR 211 and CR 216 intersection.

Segment 44

Segment 44 originates at its intersection with Segment 41 along the southern boundary of Section 269, approximately 1.1 miles southwest of the CR 211 and CR 216 intersection. It extends east for approximately 0.51 mile as it parallels the southern boundary of Section 269 and crosses CR 211 into Section 246. It then terminates at its intersection with Segment 45 in the southwest corner of Section 246, approximately 1.0 mile south of the CR 211 and CR 216 intersection.

Segment 45

Segment 45 originates at its intersection with Segment 44 in the southwest corner of Section 246, approximately 1.0 mile south of the CR 211 and CR 216 intersection. It travels east parallel to the southern boundary of Section 246 for approximately 0.36 mile, then angles to the southeast and extends approximately 0.13 mile as it crosses into Section 247 . Segment 45 then angles back to the east and parallels the northern boundary of Section 247 for approximately 0.48 mile where it terminates at its intersection with Segments 43c and 47 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection.

Segment 47

Segment 47 originates at its intersection with Segments 43 c and 45 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection. It extends south for approximately 1.01 miles paralleling the eastern boundary of Section 247, and crosses CR 212 into Section 232, where it terminates at its intersection with Segments 48 and 59, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection.

Segment 48

Segment 48 originates at its intersection with Segments 47 and 59, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection. It extends south for approximately 0.86 mile, paralleling the eastern boundary of Section 232 and terminates at its intersection with Segments 49 and 51, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection.

Segment 49

Segment 49 originates at its intersection with Segments 48 and 51, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection. It travels south approximately 0.11 mile, paralleling the eastern boundary of Section 232, and then turns east on the north side of an existing transmission line. It then extends to the east parallel to the north side of the existing transmission line along the southern boundary of Section 233 for approximately 1.04 miles and crosses into Section 215 where it terminates at its intersection with Segments 50, 52, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection.

Segment 50

Segment 50 originates at its intersection with Segments 49, 52, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection. It extends southeast for approximately 0.13 mile as it crosses into Section 216 and turns to the
east. The segment travels east and parallels the northern boundary of Section 216 approximately 0.34 mile where it terminates with its intersection with Segment 53 approximately 1.12 miles northwest of the CR 208 and CR 205 intersection.

Segment 51

Segment 51 originates at its intersection with Segments 48 and 49, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection. It extends to the southwest approximately 0.11 mile, turns and extends south for approximately 0.03 mile crossing the existing transmission line and entering the northeast corner of Section 249. The segment then travels south for approximately 0.93 mile in the eastern portion of Section 249. At this point, the segment angles to the southeast and extends for approximately 0.17 mile, as it crosses the southwest corner of Section 232, crosses CR 208, and extends into Section 231. Segment 51 then turns to the east and extends approximately 0.85 mile. It then terminates at its intersection with Segments 52 and 54 in the northeast corner of Section 231 approximately 0.96 mile eastsoutheast of the CR 208 and SH 214 intersection.

Segment 52

Segment 52 originates at its intersection with Segments 49, 50, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection. It extends south approximately 0.05 mile as it crosses into Section 216 , paralleling the east side of an existing transmission line. It then angles to the southwest and extends approximately 0.10 mile where it intersects the existing transmission line along the western boundary of Section 216. At this point, Segment 52 will be installed as a second circuit on the existing transmission line and extend south approximately 0.57 mile. Segment 52 then angles to the southwest, leaves the existing transmission line and enters Section 232 as it extends approximately 0.23 mile before turning back to the south. The segment extends south approximately 0.14 mile as it crosses CR 208 and enters Section 231. It terminates at its intersection with Segments 51 and 54, in the northeast corner of Section 231 approximately 0.96 mile east-southeast of the CR 208 and SH 214 intersection.

Segment 53

Segment 53 originates at its intersection with Segment 50, along the northern boundary of Section 216 approximately 1.12 miles northwest of the CR 205 and CR 208 intersection. It extends south for approximately 1.0 mile through the center of section 216 and crosses CR 208. Segment 53 then extends for approximately 0.05 mile south where it crosses an existing transmission line, then continues south an additional 0.01 mile and terminates at its intersection with Segments 54 and 55 on an existing transmission line, in the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection.

Segment 54

Segment 54 originates at its intersection with Segments 51 and 52, south of CR 208 in the northeast corner of Section 231 approximately 1.0 mile east-southeast of the CR 208 and SH 214 intersection. It extends east approximately 0.08 mile as it enters Section 217 and intersects an existing transmission line. From this point, Segment 54 extends east as a second circuit installed on an existing transmission line for approximately 0.48 mile as it parallels the south side of another existing transmission line and terminates at its intersection with Segments 53 and 55
along the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection.

Segment 55

Segment 55 originates at its intersection with Segments 53 and 54, south of CR 208 on an existing transmission line in the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection. It extends east for approximately 0.36 mile, installed as a second circuit on an existing transmission line that parallels the south side of another existing transmission line. It then angles south and proceeds an additional 0.07 mile installed as a second circuit on an existing transmission line. Segment 55 then leaves the existing transmission line structures and extends south 0.01 mile, turns east and proceeds approximately 0.08 mile and terminates at the existing Seminole Substation, southwest of the CR 205 and CR 208 intersection.

Segment 56

Segment 56 originates at its intersection with Segments 2a and 4, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29. The segment travels south parallel to the east side of CR 375 for approximately 0.36 mile where it crosses the Yoakum/Gaines County Line and enters Section 24. The segment then continues south, parallel to the east side of CR 211 for approximately 0.49 mile, where it angles to the southwest and extends approximately 0.06 mile as it crosses CR 211, enters Section 25, and crosses McKenzie Draw before turning to the south. Segment 56 then travels south paralleling the west side of CR 211 for approximately 0.46 mile and terminates at its intersection with Segments 17a and 17b northwest of the SH 83 and CR 211 intersection, in the southeast corner of Section 25.

Segment 57

Segment 57 originates at its intersection with Segments 36 and 40 in the southeast corner of Section 278, approximately 1.4 miles northwest of the CR 211 and CR 216 intersection. It travels east for approximately 1.0 mile, immediately crossing into Section 271 and paralleling the southern boundary of Section 271, then crossing CR 211 and entering Section 244. Segment 57 then travels east for approximately 0.63 mile, parallel to the southern boundary of Section 244. It then angles to the southeast and extends approximately 0.12 mile as it crosses into Section 245. It then turns back to the east and parallels the northern boundary of Section 245 for approximately 0.25 mile and the northern boundary of Section 236 for approximately 1.00 mile. It then terminates at its intersection with Segments 43a and 43b, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection.

Segment 58

Segment 58 originates at its intersection with Segments 43b and 43c, in the southeast corner of Section 235 approximately 1.4 miles northwest of the CR 205 and CR 212 intersection. It extends to the south for approximately 0.95 mile, immediately entering Section 234 and parallel to the eastern boundary of Section 234. It then angles to the southwest and extends approximately 0.04 mile, turns back to the south and proceeds for approximately 0.04 mile as it crosses CR 212 into the northeast corner of Section 233 and terminates at its intersection with Segments 59 and 60 approximately 1.03 miles west of the CR 205 and CR 212 intersection.

Segment 59

Segment 59 originates at its intersection with Segments 47 and 48, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection. It travels east
paralleling the south side of CR 212 for approximately 0.99 mile and terminates at its intersection with Segments 58 and 60 in the northeast corner of Section 233, approximately 1.03 miles west of the CR 205 and CR 212 intersection.

Segment 60

Segment 60 originates at its intersection with Segments 58 and 59 in the northeast corner of Section 233 approximately 1.03 miles west of the CR 205 and CR 212 intersection. It extends southeast approximately 0.05 mile, crossing into Section 215 before turning to the south. The segment travels south approximately 0.82 mile paralleling the western boundary of Section 215, then angles southeast and extends approximately 0.11 mile where it terminates at its intersection with Segments 49,50 , and 52 , in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection.

Landowners and Transmission Line Cases at the PUC

Public Utility Commission of Texas

1701 N. Congress Avenue
P.O. Box 13326

Austin, Texas 78711-3326
(512) 936-7261
www.puc.state.tx.us
Effective: June 1, 2011

This brochure is intended to provide landowners with information about proposed new transmission lines and the Public Utility Commission's ("PUC" or "Commission") process for evaluating these proposals. At the end of the brochure is a list of sources for additional information.

The following topics are covered in this brochure:

- How the PUC evaluates whether a new transmission line should be built,
- How you can participate in the PUC's evaluation of a line, and
- How utilities acquire the right to build a transmission line on private property.

You are receiving the enclosed formal notice because one or more of the routes for a proposed transmission line may require an easement or other property interest across your property, or the centerline of the proposed project may come within 300 feet of a house or other habitable structure on your property. This distance is expanded to 500 feet if the proposed line is greater than 230 kilovolts (kV). For this reason, your property is considered directly affected land. This brochure is being included as part of the formal notice process.

If you have questions about the proposed routes for a transmission line, you may contact the applicant. The applicant also has a more detailed map of the proposed routes for the transmission line and nearby habitable structures. The applicant may help you understand the routing of the project and the application approval process in a transmission line case but cannot provide legal advice or represent you. The applicant cannot predict which route may or may not be approved by the PUC. The PUC decides which route to use for the transmission line, and the applicant is not obligated to keep you informed of the PUC's proceedings. The only way to fully participate in the PUC's decision on where to locate the transmission line is to intervene, which is discussed below.

The PUC is sensitive to the impact that transmission lines have on private property. At the same time, transmission lines deliver electricity to millions of homes and businesses in Texas, and new lines are sometimes needed so that customers can obtain reliable, economical power.

The PUC's job is to decide whether a transmission line application should be approved and on which route the line should be constructed. The PUC values input from landowners and encourages you to participate in this process by intervening in the docket.

PUC Transmission Line Case

Texas law provides that most utilities must file an application with the PUC to obtain or amend a Certificate of Convenience and Necessity (CCN) in order to build a new transmission line in Texas. The law requires the PUC to consider a number of factors in deciding whether to approve a proposed new transmission line.

The PUC may approve an application to obtain or amend a CCN for a transmission line after considering the following factors:

- Adequacy of existing service;
- Need for additional service;
- The effect of approving the application on the applicant and any utility serving the proximate area;
- Whether the route utilizes existing compatible rights-of-way, including the use of vacant positions on existing multiple-circuit transmission lines;
- Whether the route parallels existing compatible rights-of-way;
- Whether the route parallels property lines or other natural or cultural features;
- Whether the route conforms with the policy of prudent avoidance (which is defined as the limiting of exposures to electric and magnetic fields that can be avoided with reasonable investments of money and effort); and
- Other factors such as community values, recreational and park areas, historical and aesthetic values, environmental integrity, and the probable improvement of service or lowering of cost to consumers in the area.

If the PUC decides an application should be approved, it will grant to the applicant a CCN or CCN amendment to allow for the construction and operation of the new transmission line.

Application to Obtain or Amend a CCN:

An application to obtain or amend a CCN describes the proposed line and includes a statement from the applicant describing the need for the line and the impact of building it. In addition to the routes proposed by the applicant in its application, the possibility exists that additional routes may be developed, during the course of a CCN case, that could affect property in a different manner than the original routes proposed by the applicant.

The PUC conducts a case to evaluate the impact of the proposed line and to decide which route should be approved. Landowners who would be affected by a new line can:

- informally file a protest, or
- formally participate in the case as an intervenor.

Filing a Protest (informal comments):

If you do not wish to intervene and participate in a hearing in a CCN case, you may file comments. An individual or business or a group who files only comments for or against any aspect of the transmission line application is considered a "protestor."

Protestors make a written or verbal statement in support of or in opposition to the utility's application and give information to the PUC staff that they believe supports their position.

Protestors are not parties to the case, however, and do not have the right to:

- Obtain facts about the case from other parties;
- Receive notice of a hearing, or copies of testimony and other documents that are filed in the case;
- Receive notice of the time and place for negotiations;
- File testimony and/or cross-examine witnesses;
- Submit evidence at the hearing; or
- Appeal P.U.C. decisions to the courts.

If you want to make comments, you may either send written comments stating your position, or you may make a statement on the first day of the hearing. If you have not intervened, however, you will not be able to participate as a party in the hearing. Only parties may submit evidence and the PUC must base its decision on the evidence.

Intervening in a Case:

To become an intervenor, you must file a statement with the PUC, no later than the date specified in the notice letter sent to you with this brochure, requesting intervenor status (also referred to as a party). This statement should describe how the proposed transmission line would affect your property. Typically, intervention is granted only to directly affected landowners. However, any landowner may request to intervene and obtain a ruling on his or her specific fact situation and concerns. A sample form for intervention and the filing address are attached to this brochure, and may be used to make your filing. A letter requesting intervention may also be used in lieu of the sample form for intervention.

If you decide to intervene and become a party in a case, you will be required to follow certain procedural rules:

- You are required to timely respond to requests for information from other parties who seek information.
- If you file testimony, you must appear at a hearing to be cross-examined.
- If you file testimony or any letters or other documents in the case, you must send copies of the documents to every party in the case and you must file multiple copies with the PUC.
- If you intend to participate at the hearing and you do not file testimony, you must at least file a statement of position, which is a document that describes your position in the case.
- Failure to comply with these procedural rules may serve as grounds for you to be dismissed as an intervenor in the case.
- If you wish to participate in the proceedings it is very important to attend any prehearing conferences.

Intervenors may represent themselves or have an attorney to represent them in a CCN case. If you intervene in a case, you may want an attorney to help you understand the PUC's procedures and the laws and rules that the PUC applies in deciding whether to approve a transmission line. The PUC encourages landowners to intervene and become parties.

Stages of a CCN Case:

If there are persons who intervene in the case and oppose the approval of the line, the PUC may refer the case to an administrative law judge (ALJ) at the State Office of Administrative Hearings (SOAH) to conduct a hearing, or the Commission may elect to conduct a hearing itself. The hearing is a formal proceeding, much like a trial, in which testimony is presented. In the event the case is referred to SOAH, the ALJ makes a recommendation to the PUC on whether the application should be approved and where and how the line should be routed.

There are several stages of a CCN case:

- The ALJ holds a prehearing conference (usually in Austin) to set a schedule for the case.
- Parties to the case have the opportunity to conduct discovery; that is, obtain facts about the case from other parties.
- A hearing is held (usually in Austin), and parties have an opportunity to cross-examine the witnesses.
- Parties file written testimony before the date of the hearing. Parties that do not file written testimony or statements of position by the deadline established by the ALJ may not be allowed to participate in the hearing on the merits.
- Parties may file written briefs concerning the evidence presented at the hearing, but are not required to do so.
- In deciding where to locate the transmission line and other issues presented by the application, the ALJ and Commission rely on factual information submitted as evidence at the hearing by the parties in the case. In order to submit factual information as evidence (other than through cross-examination of other parties' witnesses), a party must have intervened in the docket and filed written testimony on or before the deadline set by the ALJ.
- The ALJ makes a recommendation, called a proposal for decision, to the Commission regarding the case. Parties who disagree with the ALJ's recommendation may file exceptions.
- The Commissioners discuss the case and decide whether to approve the application. The Commission may approve the ALJ's recommendation, approve it with specified changes, send the case back to the ALJ for further consideration, or deny the application. The written decision rendered by the Commission is called a final order. Parties who believe that the Commission's decision is in error may file motions for rehearing, asking the Commission to reconsider the decision.
- After the Commission rule on the motion for rehearing, parties have the right to appeal the decision to district court in Travis County.
-

Right to Use Private Property

The Commission is responsible for deciding whether to approve a CCN application for a proposed transmission line. If a transmission line route is approved that impacts your property, the electric utility must obtain the right from you to enter your property and to build, operate, and maintain the transmission line. This right is typically called an easement.

Utilities may buy easements through a negotiated agreement, but they also have the power of eminent domain (condemnation) under Texas law. Local courts, not the PUC, decide issues concerning easements for rights-of-way. The PUC does not determine the value of property.

The PUC final order in a transmission case normally requires a utility to take certain steps to minimize the impact of the new transmission line on landowners' property and on the environment. For example, the order normally requires steps to minimize the possibility of erosion during construction and maintenance activities.

HOW TO OBTAIN MORE INFORMATION

The PUC's online filings interchange on the PUC website provides free access to documents that are filed with the Commission in Central Records. The docket number, also called a control number on the PUC website, of a case is a key piece of information used in locating documents in the case. You may access the Interchange by visiting the PUC's website home page at www.puc.state.tx.us and navigate the website as follows:

- Select "Filings."
- Select "Filings Search."
- Select "Filings Search."
- Enter 5-digit Control (Docket) Number. No other information is necessary.
- Select "Search." All of the filings in the docket will appear in order of date filed.
- Scroll down to select desired filing.
- Click on a blue "Item" number at left.
- Click on a "Download" icon at left.

Documents may also be purchased from and filed in Central Records. For more information on how to purchase or file documents, call Central Records at the PUC at 512-936-7180.

PUC Substantive Rule 25.101, Certification Criteria, addresses transmission line CCNs and is available on the PUC's website, or you may obtain copies of PUC rules from Central Records.

Always include the docket number on all filings with the PUC. You can find the docket number on the enclosed formal notice. Send documents to the PUC at the following address.

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P.O. Box 13326

Austin, TX 78711-3326
The information contained within this brochure is not intended to provide a comprehensive guide to landowner rights and responsibilities in transmission line cases at the PUC. This brochure should neither be regarded as legal advice nor should it be a substitute for the PUC's rules. However, if you have questions about the process in transmission line cases, you may call the PUC's Legal Division at 512-936-7261. The PUC's Legal Division may help you understand the process in a transmission line case but cannot provide legal advice or represent you in a case. You may choose to hire an attorney to decide whether to intervene in a transmission line case, and an attorney may represent you if you choose to intervene.

Communicating with Decision-Makers

Do not contact the ALJ or the Commissioners by telephone or email. They are not allowed to discuss pending cases with you. They may make their recommendations and decisions only by relying on the evidence, written pleadings, and arguments that are presented in the case.

Request to Intervene in PUC Docket No. 48724

The following information must be submitted by the person requesting to intervene in this proceeding. This completed form will be provided to all parties in this docket. If you DO NOT want to be an intervenor, but still want to file comments, please complete the "Comments" page.

Mail this completed form and 10 copies to:
Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Ave.
P.O. Box 13326

Austin, TX 78711-3326

First Name: \qquad Last Name: \qquad
Phone Number: \qquad Fax Number: \qquad
Address, City, State: \qquad

I am requesting to intervene in this proceeding. As an INTERVENOR, I understand the following:

- I am a party to the case;
- I am required to respond to all discovery requests from other parties in the case;
- If I file testimony, I may be cross-examined in the hearing;
- If I file any documents in the case, I will have to provide a copy of that document to every other party in the case; and
- I acknowledge that I am bound by the Procedural Rules of the Public Utility Commission of Texas (PUC) and the State Office of Administrative Hearings (SOAH).

Please check one of the following:

\square I own property with a habitable structure located near one or more of the utility's proposed routes for a transmission line.
One or more of the utility's proposed routes would cross my property.

\squareOther. Please describe and provide comments. You may attach a separate page, if necessary. \qquad
\qquad
\qquad
\qquad
\qquad
Signature of person requesting intervention:

Date: \qquad

Comments in Docket No.

If you want to be a PROTESTOR only, please complete this form. Although public comments are not treated as evidence, they help inform the PUC and its staff of the public concerns and identify issues to be explored. The PUC welcomes such participation in its proceedings.

Mail this completed form and 10 copies to:
Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Ave.
P.O. Box 13326

Austin, TX 78711-3326

First Name: Last Name: \qquad
Phone Number: \qquad Fax Number: \qquad
Address, City, State: \qquad

I am NOT requesting to intervene in this proceeding. As a PROTESTOR, I understand the following:

- I am NOT a party to this case;
- My comments are not considered evidence in this case; and
- I have no further obligation to participate in the proceeding.

Please check one of the following:

I own property with a habitable structure located near one or more of the utility's proposed routes for a transmission line.

One or more of the utility's proposed routes would cross my property.
\square Other. Please describe and provide comments. You may attach a separate page, if necessary. \qquad
\qquad
\qquad
\qquad
\qquad

Signature of person submitting comments:

Date: \qquad

THE STATE OF TEXAS
 LANDOWNER'S
 BILL OF RIGHTS

PREPARED BY THE

OFFICE OF THE

STATE OF TEXAS LANDOWNER'S BiLL OF RIGH'TS

This Landowner's Bill of Rights applies to any attempt by the government or a private entity to take your property. The contents of this Bill of Rights are prescribed by the Texas Legislature in Texas Government Code Sec. 402.031 and Chapter 21 of the Texas Property Code.

1. You are entitled to receive adequate compensation if your property is taken for a public use.
2. Your property can only be taken for a public use.
3. Your property can only be taken by a governmental entity or private entity authorized by law to do so.
4. The entity that wants to take your property must notify you that it wants to take your property.
5. The entity proposing to take your property must provide you with a written appraisal from a certified appraiser detailing the adequate compensation you are owed for your property.
6. The entity proposing to take your property must make a bona fide offer to buy the property before it files a lawsuit to condemn the property - which means the condemning entity must make a good faith offer that conforms with Chapter 21 of the Texas Property Code.
7. You may hire an appraiser or other professional to
determine the value of your property or to assist you in any condemnation proceeding.
8. You may hire an attorney to negotiate with the condemning entity and to represent you in any legal proceedings involving the condemnation.
9. Before your property is condemned, you are entitled to a hearing before a court appointed panel that includes three special commissioners. The special commissioners must determine the amount of compensation the condemning entity owes for the taking of your property. The commissioners must also determine what compensation, if any, you are entitled to receive for any reduction in value of your remaining property.
10. If you are unsatisfied with the compensation awarded by the special commissioners, or if you question whether the taking of your property was proper, you have the right to a trial by a judge or jury. If you are dissatisfied with the trial court's judgment, you may appeal that decision.

CONDEMNATION PROCEDURE

Eminent domain is the legal authority that certain entities are granted that allows those entities to take private property for a public use. Private property can include land and certain improvements that are on that property.

Private property may only be taken by a governmental entity or private entity that is authorized by law to do so. Your property may be taken only for a public purpose. That means it can only be taken for a purpose or use that serves the general public. Texas law prohibits condemnation authorities from taking your property to enhance tax revenues or foster economic development.

Your property cannot be taken without adequate compensation. Adequate compensation includes the market value of the property being taken. It may also include certain damages if your remaining property's market value is diminished by the acquisition itself or by the way the condemning entity will use the property.

The taking of private property by eminent domain must follow certain procedures. First, the entity that wants to condemn your property must provide you a copy of this Landowner's Bill of Rights before - or at the same time - the entity first represents to you that it possesses eminent domain authority.

Second, if it has not been previously provided, the condemning entity must send this Landowner's Bill of Rights to the last known address of the person who is listed as the property owner on the most recent tax roll. This requirement stipulates that the Landowner's Bill of Rights must be provided to the property owner at least seven days before the entity makes a final offer to acquire the property.

Third, the condemning entity must make a bona fide offer to purchase the property. The requirements for a bona fide offer are contained in Chapter 21 of the Texas Property Code. At the time a purchase offer is made, the condemning entity must disclose any appraisal reports it produced or acquired that relate specifically to the property and were prepared in the ten years preceding the date of the purchase offer. You have the right to discuss the offer with others and to either accept or reject the offer made by the condemning entity.

CONDEMNATION PROCEEDINGS

If you and the condemning entity do not agree on the value of your property, the entity may begin condemnation proceedings. Condemnation is the legal process that eligible entities utilize to take private property. It begins with a condemning entity filing a claim for your property in court. If you live in a county where part of the property being condemned is located, the claim must be filed in that county. Otherwise, the condemnation claim can be filed in any county where at least part of the property being condemned is located. The claim must describe the property being condemned, state with specificity the public use, state the name of the landowner, state that the landowner and the condemning entity were unable to agree on the value of the property, state that the condemning entity provided the landowner with the Landowner's Bill of Rights, and state that the condemning entity made a bona fide offer to acquire the property from the property owner voluntarily.

SPECIAL COMMMSSIONERS' HEARING

After the condemning entity files a condemnation claim in court, the judge will appoint three local landowners to serve as special commissioners. The judge will give you a reasonable period to strike one of the special commissioners. If a commissioner is struck, the judge will appoint a replacement. These special commissioners must live in the county where the condemnation proceeding is filed, and they must take an oath to assess the amount of adequate compensation fairly, impartially, and according to the law. The special commissioners are not legally authorized to decide whether the condemnation is necessary or if the public use is proper. Their role is limited to assessing adequate compensation for you. After being appointed, the special commissioners must schedule a hearing at the earliest practical time and place. The special commissioners are also required to give you written notice of the condemnation hearing.

You are required to provide the condemning entity any appraisal reports that were used to determine your claim about adequate compensation for the condemned property. Under a new law enacted in 2011, landowners' appraisal reports must be provided to the condemning entity either ten days after the landowner receives the report or three business days before the special commissioners' hearing - whichever is earlier. You may hire an appraiser or real estate professional to help you determine the value of your private property. Additionally, you can hire an attorney to represent you during condemnation proceedings.

At the condemnation hearing, the special commissioners will consider your evidence on the value of your condemned property, the damages to remaining property, any value added to the remaining property as a result of the condemnation, and the condemning entity's proposed use of your condemned property.

SPECIAL COMMISSIONERS'AWARD

After hearing evidence from all interested parties, the special commissioners will determine the amount of money that you should be awarded to adequately compensate you for your property. The special commissioners' decision is significant to you not only because it determines the amount that qualifies as adequate compensation, but also because it impacts who pays for the cost of the condemnation proceedings. Under the Texas Property Code, if the special commissioners' award is less than or equal to the amount the condemning entity offered to pay before the proceedings began, then you may be financially responsible for the cost of the condemnation proceedings. However, if the special commissioners' award is more than the condemning entity offered to pay before the proceedings began, then the condemning entity will be responsible for the costs associated with the proceedings.

The special commissioners are required to provide the court that appointed them a written decision. That decision is called the "Award." The Award must be filed with the court and the court must send written notice of the Award to all parties. After the Award is filed, the condemning entity may take possession of the property being condemned, even if either party appeals the Award of the special commissioners. To take possession of the property, the condemning entity must either pay the amount of the Award or deposit the amount of the Award into the court's registry. You have the right to withdraw funds that are deposited into the registry of the court.

OBJECTION TO THE SPECIAL COMMISSIONERS' AWARD

If either the landowner or the condemning entity is dissatisfied with the amount of the Award, either party can formally object to the Award. In order to successfully make this valuation objection, it must be filed in writing with the court. If neither party timely objects to the special commissioners' Award, the court will adopt the Award as the final judgment of the court.

If a party timely objects to the special commissioners' Award, the court will hear the case in the same manner that other civil cases are heard. Landowners who object to the Award and ask the court to hear the matter have the right to a trial and can elect whether to have the case decided by a judge or jury. The allocation of any trial costs is decided in the same manner that costs are allocated with the special commissioners' Award. After trial, either party may appeal any judgment entered by the court.

DISMISSAL OF THE CONDEMNATION ACTION

A condemning entity may file a motion to dismiss the condemnation proceeding if it decides it no longer needs your condemned property. If the court grants the motion to dismiss, the case is over and you are entitled to recover reasonable and necessary fees for attorneys, appraisers, photographers, and for other expenses incurred to the date of the hearing on the motion to dismiss.

If you wish to challenge the condemning entity's authority to take your property, you can lodge that challenge by filing a motion to dismiss the condemnation proceeding. Such a motion to dismiss would allege that the condemning entity did not have the right to condemn your property. For example, a landowner could challenge the condemning entity's claim that it seeks to take the property for a public use. If the court grants the landowner's motion, the court may award the landowner reasonable and necessary fees for attorneys, appraisers, photographers, and for other expenses incurred to the date of the hearing or judgment.

RELOCATION COSTS

If you are displaced from your residence or place of business, you may be entitled to reimbursement for reasonable expenses incurred while moving personal property from the residence or relocating the business to a new site. However, during condemnation proceedings, reimbursement for relocation costs may not be available if those costs are separately recoverable under another law. Texas law limits the total amount of available relocation costs to the market value of the property being moved. Further, the law provides that moving costs are limited to the amount that a move would cost if it were within 50 miles.

RECLAMATION OPTIONS

If private property was condemned by a governmental entity, and the public use for which the property was acquired is canceled before that property is used for that public purpose, no actual progress is made toward the public use within ten years or the property becomes unnecessary for public use within ten years, landowners may have the right to repurchase the property for the price paid to the owner by the entity at the time the entity acquired the property through eminent domain.

DISCLAIMER

The information in this statement is intended to be a summary of the applicable portions of Texas state law as required by HB 1495, enacted by the 80th Texas Legislature, Regular Session. This statement is not legal advice and is not a substitute for legal counsel.

ADDITIIONAL RESOURCES

Further information regarding the procedures, timelines and requirements outlined in this document can be found in Chapter 21 of the Texas Property Code.
Docket No． 48724

Parcel ID	Map ID	Habitable Structure \＃	Legal	County	Landowner	Address	City	State	Zip
1a									
6808	1		$\begin{array}{\|c\|} \hline \text { S/2 \& E119.32 N/2 SEC } 887 \text { LESS } \\ \text { HS BLK D } \end{array}$	Yoakum	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
2a									
6808	1		$\begin{array}{\|c\|} \hline \text { S/2 \& E119.32 N/2 SEC } 887 \text { LESS } \\ \text { HS BLK D } \end{array}$	Yoakum	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
6799	2		$\begin{aligned} & \text { W/2 SEC } 886 \text { LESS H/S BLK D } \\ & \text { ABST } 477 \\ & \hline \end{aligned}$	Yoakum	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
4196	5		W／PT SEC 29 BLK C35 ABST $1784 \& 1781$	Yoakum	Peter and Katharina Banman	P．O．Box 647	Denver City	тX	79323
3 边									
6808	1		$\begin{gathered} \hline \text { S/2 \& E119.32 N/2 SEC } 887 \text { LESS } \\ \text { HS BLK D } \end{gathered}$	Yoakum	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
4174	3		SEC 28 BLK C35 ABST 1776	Yoakum	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
4187	4	1	LT 1－2 ROPER DRAW I LT 20－21 ROPER DRAW II SEC 28 BLK C35 ABST 1790	Yoakum	Scott \＆Jolynn Frankfather	P．O．Box 696	Denver City	TX	79323
4 边									
4196	5		W／PT SEC 29 BLK C35 ABST $1784 \& 1781$	Yoakum	Peter and Katharina Banman	P．O．Box 647	Denver City	TX	79323
4197	6		E／PT \＆E／PT W／PT SEC 29 BLK C35 ABST $1781 \& 1786$	Yoakum	Karan J．Kirk	450 County Road 178	Gorman	TX	76454
－									
4197	6		E／PT \＆E／PT W／PT SEC 29 BLK C35 ABST $1781 \& 1786$	Yoakum	Karan J．Kirk	450 County Road 178	Gorman	TX	76454
12 边									
4197	6		E／PT \＆E／PT W／PT SEC 29 BLK C35 ABST $1781 \& 1786$	Yoakum	Karan J．Kirk	450 County Road 178	Gorman	TX	76454
55197	13		BLK C35 NW／4 SEC 22 PSL	Gaines	Joan Billings	Route 1 Box 339	Seagraves	TX	79359
55194	14		BLK C35 NE／4 \＆SW／4 SEC 22 PSL	Gaines	Joan Billings	R．t 1 Box 339	Seagraves	TX	79359
55165	23		BLK C35 W／2 SEC 15 PSL	Gaines	Addison Farms，LTD．	3801 102nd St．	Lubbock	TX	79423
$\mathbf{1 3}$									
4174	3		SEC 28 BLK C35 ABST 1776	Yoakum	Golden Spread Electric CO－Op，Inc． $\%$ Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
55218	8		$\begin{gathered} \hline \text { BLK C35 ALL EXCP NE/4 \& N/5 } \\ \text { AC SE/4 SEC } 25 \text { PSL } \\ \hline \end{gathered}$	Gaines	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
55223	7	＊potential aerial easement．Consult with engineers	$\underset{\text { PSL }}{\text { BLK C35 SEC } 26 \text { LESS } 8.94 \mathrm{AC}}$	Gaines	Abram F．\＆Katharina Dyck	P．O．Box 301	Denver City	TX	79323
16									
55218	8		BLK C35 ALL EXCP NE／4 \＆N／5 AC SE／4 SEC 25 PSL	Gaines	Golden Spread Electric CO－Op，Inc． \％Mr．Steve D．Cross	905 S．Filmore，Suite 300	Amarillo	TX	79101
55220	9		BLK C35 3．97 AC TR SE／4 SEC 25 PSL	Gaines	State of Texas	1700 Congress Ave．	Austin	TX	78701
55113	16		BLK C35 NW／4 EXC NE／COR SEC 12 PSL	Gaines	James R．\＆Bertha Peters	223 CR 303－I	Seminole	TX	79360
55102	19		BLK C35 S／2 SEC 12 PSL	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
55223	7	＊potential aerial easement．Consult with engineers	BLK C35 SEC 26 LESS 8.94 AC PSL	Gaines	Abram F．\＆Katharina	P．O．Box 301	Denver City	TX	79323

Docket No. 48724
Mustang to Seminole CCN
Landowner List

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
17a									
55218	8		BLK C35 ALL EXCP NE/4 \& N/5 AC SE/4 SEC 25 PSL	Gaines	Golden Spread Electric CO-Op, Inc. \% Mr. Steve D. Cross	905 S. Filmore, Suite 300	Amarillo	TX	79101
55124	17	2	BLK C35 N/2 NW/4 SEC 12 PSL	Gaines	Eddie \& Carla Cook	P.O. Box 46	Denver City	тX	79323
55220	9		BLK C35 3.97 AC TR SE/4 SEC 25 PSL	Gaines	State of Texas	1700 Congress Ave.	Austin	TX	78701
55223		*potential aerial easement. Consult with engineers	$\underset{\text { PSL }}{\text { BLK C35 SEC } 26 \text { LESS } 8.94 \mathrm{AC}}$	Gaines	Abram F. \& Katharina	P.O. Box 301	Denver City	тX	79323
17b									
55218	8		BLK C35 ALL EXCP NE/4 \& N/5 AC SE/4 SEC 25 PSL	Gaines	Golden Spread Electric CO-Op, Inc. \% Mr. Steve D. Cross	905 S. Filmore, Suite 300	Amarillo	TX	79101
55091	18		BLK C35 NE/4 SEC 12 PSL	Gaines	Joan Billings	Route 1 Box 339	Seagraves	TX	79359
55147	20	3	$\underset{\text { BSL }}{\substack{\text { BLK C35 NW/COR NW/4 SEC } \\ \text { PS }}}$	Gaines	Fourway Ginnings Association Lee Billings, Manager	1598 County Road 211	Seagraves	TX	79359
55137	21		BLK C35 SEC 13 EXC 20 AC NW/C NW/4 PSL	Gaines	Harvie \& Clay A. Kemper	1 Santa Barbara	Odessa	TX	79765
18									
55102	19		BLK C35 S/2 SEC 12 PSL	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
55079	15		BLK C35 S/2 SEC 11 PSL	Gaines	Abe F. \& Katharina Dyck	P.O. Box 301	Denver City	TX	79323
54996	32		BLK C35 NE/4 SEC 8 PSL	Gaines	Abe F. \& Katharina Dyck	P.O. Box 301	Denver City	TX	79323
55028	31		BLK C35 NW/4 SEC 8 PSL	Gaines	Abe \& Tina Dyck	P.O. Box 301	Denver City	TX	79323
19									
55102	19		BLK C35 S/2 SEC 12 PSL	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
55137	21		BLK C35 SEC 13 EXC 20 AC NW/C NW/4 PSL	Gaines	Harvie \& Clay A. Kemper	1 Santa Barbara	Odessa	TX	79765
20									
55028	31		BLK C35 NW/4 SEC 8 PSL	Gaines	Abe \& Tina Dyck	P.O. Box 301	Denver City	TX	79323
55036	30		BLK C35 NW/4 SEC 8 PSL	Gaines	Russel \& Gwynne Denison	10002 W. Bolivar Dr.	Sun City	AZ	85351
55046	29		BLK C35 W/2 SEC 9 PSL	Gaines	Walter \& Duwane Billings etux	Box 1575	Seagraves	TX	79359
53938	28		BLK AX W/2 \& NE/4 SEC 41 PSL	Gaines	Royce Lan Skains	107 N. Cherry Lane	Brownfield	TX	79316
53939	24		BLK AX 8.5 AC TR NE/HWY SEC 42 PSL	Gaines	TGB Equipment Leasing, LLC	1008 Southwest Cir	Center	TX	75935
53940	25		BLK AX NE/HWY SEC 42 PSL TR 4-6 NORTON SUBDIVISION	Gaines	David Boiles	15082 Starboard Dr.	Willis	TX	77318
53941	26		BLK AX NE/HWY SEC 42 PSL TR 3 NORTON SUBDIVISION	Gaines	David G. \& Mardy Boiles	15082 Starbard Dr.	Willis	TX	77318
53942	27		BLK AX NE/HWY SEC 42 PSL TR $1 \& 2$ NORTON SUBDIVISION	Gaines	David G. \& Mardy Boiles	15082 Starbard Dr.	Willis	TX	77318
57942	38		$\begin{gathered} \text { BLK G W/2 SEC } 309 \text { CCSD \& } \\ \text { RGNG RR CO } \\ \hline \end{gathered}$	Gaines	James G. \& Arl B. Weir	305 Gary Lane	Denver City	TX	79323
179527	48		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 1	Gaines	A \& RJ Oilfield Services, LLC	P.O. Box 698	Denver City	TX	79323
176607	49		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 2	Gaines	A \& RJ Oilfield Services, LLC	P.O. Box 698	Denver City	TX	79323

Docket No. 48724
Mustang to Seminole CCN
Landowner List

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
179528	50		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 3	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179529	51		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 4	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179530	52		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 5	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179531	53		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 6	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179532	54		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 7	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179533	55		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 8	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179534	56		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 9	Gaines	Westfield Acres, LLC Bergen Bernard	P.O. Box 1684	Seminole	TX	79360
179535	57		BLK G NW/73.7 AC SEC 310 CCSD \& RGNG RR CO COUNTRY VIEW EST LOT 10	Gaines	M2YBARRA Invesments, LLC	1033 Cricket Lane	San Angelo	TX	76905
57945	58		BLK G SEC 310 CCSD \& RGNG RR CO LESS 73.7AC TR NW/PT	Gaines	Bernhard N \& Justina G Bergen	150 County Road 307	Seminole	TX	79360
57947	64		BLK G W/2 NW/4 \& SW/4 E/HWY SEC 311 CCSD \& RGNG RR CO	Gaines	Elizabeth H Montalvo	10822 Rocky Trail	San Antonio	TX	78249
21									
55165	23		BLK C35 W/2 SEC 15 PSL	Gaines	Addison Farms, LTD.	3801 102nd St.	Lubbock	TX	79423
55161	22		BLK C35 LESS 90 AC SEC 14 PSL,	Gaines	Harold Williams Dec'd Attn: V'Rhett Williams, et al	1633 124th St.	Lubbock	TX	79423
55137	21		BLK C35 SEC 13 EXC 20 AC NW/C NW/4 PSL	Gaines	Harvie \& Clay A. Kemper	1 Santa Barbara	Odessa	TX	79765
22									
55165	23		BLK C35 W/2 SEC 15 PSL	Gaines	Addison Farms, LTD.	3801 102nd St.	Lubbock	TX	79423
55242	36		BLK C35 N/PT W/2 SEC 4 PSL	Gaines	Addison Farms, LTD.	3801 102nd St.	Lubbock	TX	79423
55231	37		BLK C35 S/200 AC W/2 SEC 4 PSL	Gaines	Billy Welch	801 SW Ave H	Seminole	TX	79360
57416	47		BLK G N/2 SEC 208 WTRR CO	Gaines	Joe Reed	188 State Highway 83 W	Seagraves	TX	79359
176548	45		BLK G 15AC TR NE/4 SEC 240 WTRR CO	Gaines	Armando \& Mirna Saldana	P.O. Box 874	Denver City	TX	79323
57649	44		BLK G NE/4 SEC 240 WTRR CO LESS A 15AC TR	Gaines	Sue Billings \% Grady \& Lavona Reed Billings	188 State Highway 83 W	Seagraves	TX	79359
68438	46		BLK G SE/4 SEC 240 WTRR CO	Gaines	Grady Billings	650 State Highway 83 W	Seagraves	TX	79359
24									
55102	19		BLK C35 S/2 SEC 12 PSL	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
54986	35		BLK C35 SEC 7 PSL	Gaines	Walter \& Norma June Billings	P.O. Box 1575	Seagraves	TX	79359
54996	32		BLK C35 NE/4 SEC 8 PSL	Gaines	Abe F. \& Katharina Dyck	P.O. Box 301	Denver City	TX	79323
55008	34		BLK C35 SE/4 SEC 8 PSL	Gaines	Abram F. \& Katharina N Dyc	P.O. Box 301	Denver City	TX	79323

Docket No. 48724
Mustang to Seminole CCN
Landowner List

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
58184	41		BLK G NE/4 SEC 275 WTRR CO	Gaines	Abram F. \& Katharina N Dyck	P.O. Box 301	Denver City	TX	79323
58182	43	6	LK G 5 AC TR NW/COR SEC 274 NW/4 WTRR CO	Gaines	Michael \& Carla Cook	P.O. Box 46	Denver City	TX	79323
58185	42		BLK G S/2 SEC 275 WTRR CO	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
58187	59		BLK G N/2 SEC 276 WTRR CO	Gaines	Peter W. Wieler	P.O. Box 1484	Seminole	TX	79360
58188	60		BLK G S/2 SEC 276 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
58189	66		BLK G NE/4 \& E/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
58172	61		BLK G N/2 SEC 273 WTRR CO	Gaines	Wayne \& Bonnie Jean Upton	698 County Road 211	Seminole	TX	79360
25									
55028	31		BLK C35 NW/4 SEC 8 PSL	Gaines	Abe \& Tina Dyck	P.O. Box 301	Denver City	TX	79323
55015	33		BLK C35 SW/4 LESS 10AC SW/4 SEC 8 PSL	Gaines	Buster E. Rich	P.O. Box 1324	Denver City	TX	79323
58186	40		BLK G NW/4 SEC 275 WTRR CO	Gaines	Abram F. \& Katharina N Dyck	P.O. Box 301	Denver City	TX	79323
183414	39	4,5	BLK G NE/ COR NE/4 SEC 308 CCSD \& RGNG RR CO	Gaines	Peter Ginter, Jr.	805 County Road 226	Seagraves	TX	79359
58185	42		BLK G S/2 SEC 275 WTRR CO	Gaines	Kenneth Glen Fleming	501 SW 14th	Seminole	TX	79360
58187	59		BLK G N/2 SEC 276 WTRR CO	Gaines	Peter W. Wieler	P.O. Box 1484	Seminole	TX	79360
58188	60		BLK G S/2 SEC 276 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
57830	65		BLK G W/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
26									
68438	46		BLK G SE/4 SEC 240 WTRR CO	Gaines	Grady Billings	650 State Highway 83 W	Seagraves	TX	79359
57647	63		BLK G SEC 239 WTRR CO	Gaines	WE Berry, Jr. \%Ernest Berry III	P.O. Box 958	Seminole	TX	79360
27									
57654	62		BLK G E/2 SEC 242 WTRR CO	Gaines	Cornelius \& Justina Enns	P.O. Box 1393	Seminole	TX	79360
57656	71		BLK G EXC 7 AC NW/COR SEC 243 WTRR CO	Gaines	Jacob T. \& Elsabeth Friesen	154 County Road 209	Seminole	TX	79360
57657	70		BLK G 7 AC NW/COR SEC 243 WTRR CO	Gaines	Jacob T. \& Elsabeth Friesen	154 County Road 209	Seminole	TX	79360
58167	69		BLK G NE/4 EXC 5 AC SEC 272 WTRR CO	Gaines	Johan H. \& Helen Froese	208 SW Ave. M	Seminole	TX	79360
58171	68		BLK G NW/4 SEC 272 WTRR CO	Gaines	Bolderick Family Properties, LP	P.O. Box 10648	Midland	TX	79702
58189	66		BLK G NE/4 \& E/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
28									
58189	66		BLK G NE/4 \& E/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
57830	65		BLK G W/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
30									
57647	63		BLK G SEC 239 WTRR CO	Gaines	WE Berry, Jr. \%Ernest Berry III	P.O. Box 958	Seminole	TX	79360
57646	72	7,8,9	BLK G SEC 238 WTRR CO	Gaines	WE Berry, Jr. \%Ernest Berry III	P.O. Box 958	Seminole	TX	79360
57654	62		BLK G E/2 SEC 242 WTRR CO	Gaines	Cornelius \& Justina Enns	P.O. Box 1393	Seminole	TX	79360
32									

Docket No. 48724

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
57947	64		BLK G W/2 NW/4 \& SW/4 E/HWY SEC 311 CCSD \& RGNG RR CO	Gaines	Elizabeth H Montalvo	10822 Rocky Trail	San Antonio	TX	78249
57965	73		BLK G PT/N \& E/HWY SEC 312 CCSD RGNG RR CO	Gaines	Elizabeth Montalvo	10822 Rocky Trail	San Antonio	TX	78249
57927	74		BLK G W/2 SEC 305 CCSD \& RGNG RR CO	Gaines	Elizabeth Montalvo	10822 Rocky Trail	San Antonio	TX	78249
57921	82		BLK G NE OF HWY SEC 304 CCSD \& RGNG RR CO	Gaines	Pancho \& Mary F. Teichroeb	193 County Road 108	Seminole	TX	79360
33									
57830	65		BLK G W/2 NW/4 SEC 277 WTRR CO	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
58190	67		BLK G S/2 SEC 277 WTRR CO	Gaines	Clay \& Sharla Jeter	P.O. Box 1436	Seminole	TX	79360
57832	75		BLK G NW/4 SEC 278 WTRR CO	Gaines	John K. \& Agatha Fehr	189 County Road 209	Seminole	TX	79360
90249	76		BLK G SW/4 SEC 278 WTRR CO	Gaines	Weaver \& Rebekah Eustace	Route 1 Box 2C	Seminole	TX	79360
36									
90249	76		BLK G SW/4 SEC 278 WTRR CO	Gaines	Weaver \& Rebekah Eustace	Route 1 Box 2C	Seminole	тх	79360
57831	77		BLK G E/2 SEC 278 WTRR CO	Gaines	James G. \& Arl. B Weir	305 Gary Lane	Denver City	TX	79323
37									
57921	82		BLK G NE OF HWY SEC 304 CCSD \& RGNG RR CO	Gaines	Pancho \& Mary F. Teichroeb	193 County Road 108	Seminole	TX	79360
179830	83	11	BLK G N/3AC 30.18AC TR SW/HWY SEC 304 CCSD \& RGNG RR CO	Gaines	Joel Mata, Etal	819 County Road 218	Seminole	TX	79360
172215	84	12	BLK G 23.68AC OF 30.18AC TR SW/HWY SEC 304 CCSD \& RGNG RR CO	Gaines	Dee Wickson	P.O. Box 908	Seminole	TX	79360
57913	91		4ac in NE/Pt Sec 303, Blk G, CCSD \& RGNG RR Co Svy	Gaines	Pancho Teichroeb	193 County Road 108	Seminole	TX	79360
179737	95		$\begin{aligned} & \text { D C Estates, Lot 4, NW/Pt N/Hwy } \\ & \text { Sec 280, Blk G, WTRR Co Svy } \\ & \hline \end{aligned}$	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
38									
90249	76		BLK G SW/4 SEC 278 WTRR CO	Gaines	Weaver \& Rebekah Eustace	Route 1 Box 2C	Seminole	TX	79360
57834	85		BLK G W/2 \& SE/4 SEC 279 WTRR CO	Gaines	Jesse Lee Long	1204 NW 12th Place	Andrews	TX	79714
57835	97		N/2 Sec 280, Blk G, WTRR Co Svy, Less Hwy \& W 12.23ac	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
179734	92		$\begin{array}{\|l} \hline \text { D C Estates, Lot 1, NW/Pt N/Hwy } \\ \text { Sec } 280 \text {, Blk G, WTRR Co Svy } \\ \hline \end{array}$	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
179735	93		D C Estates, Lot 2, NW/Pt N/Hwy Sec 280, Blk G, WTRR Co Svy	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
179736	94		$\begin{array}{\|c} \hline \text { D C Estates, Lot 3, NW/Pt N/Hwy } \\ \text { Sec } 280 \text {, Blk G, WTRR Co Svy } \\ \hline \end{array}$	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
179737	95		$\begin{array}{\|l} \text { D C Estates, Lot 4, NW/Pt N/Hwy } \\ \text { Sec } 280 \text {, Blk G, WTRR Co Svy } \end{array}$	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
39									
179737	95		D C Estates, Lot 4, NW/Pt N/Hwy Sec 280, Blk G, WTRR Co Svy	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
179738	96		$\begin{array}{\|c} \hline \text { D C Estates, Lot 5, NW/Pt N/Hwy } \\ \text { Sec 280, Blk G, WTRR Co Svy } \end{array}$	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360

Docket No. 48724
Mustang to Seminole CCN
Landowner List

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
57835	97		N/2 Sec 280, Blk G, WTRR Co Svy, Less Hwy \& W 12.23ac	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
57836	98		S/2 Sec 280, Blk G, WTRR Co Svy, Except 9.58ac Right of Way	Gaines	Peter \& Sara Martens	1013 State Highway 214	Seminole	TX	79360
57831	77		BLK G E/2 SEC 278 WTRR CO	Gaines	James G. \& Arl. B Weir	305 Gary Lane	Denver City	TX	79323
57833	86		BLK G NE/4 SEC 279 WTRR CO	Gaines	Glen Shook	RR 1 Box 745	Seagraves	TX	79359
57834	85		$\begin{gathered} \text { BLK G W/2 \& SE/4 SEC } 279 \\ \text { WTRR CO } \\ \hline \end{gathered}$	Gaines	Jesse Lee Long	1204 NW 12th Place	Andrews	TX	79714
57835	97		N/2 Sec 280, Blk G, WTRR Co Svy, Less Hwy \& W 12.23ac	Gaines	Gerhard \& Katharina Neustaeter	252 County Road 304-C	Seminole	TX	79360
57836	98		S/2 Sec 280, Blk G, WTRR Co Svy, Except 9.58ac Right of Way	Gaines	Peter \& Sara Martens	1013 State Highway 214	Seminole	TX	79360
58158	99	*potential aerial easement. Consult with engineers	NW/4 Sec 269, Blk G, WTRR Co Svy	Gaines	Peter \& Maria Dec'd Wieler	P.O. Box 1484	Seminole	TX	79360
41									
57836	98		S/2 Sec 280, Blk G, WTRR Co Svy, Except 9.58ac Right of Way	Gaines	Peter \& Sara Martens	1013 State Highway 214	Seminole	TX	79360
57841	105		$\begin{gathered} \text { N 7/8 of NE/4 Sec 281, Blk G, } \\ \text { WTRR Co Svy } \end{gathered}$	Gaines	B E Miller Estate \% Robin Carr	6265 Boone Ridge	Zionsville	IN	46077
58157	100		$\begin{gathered} \text { SW/4 Sec 269, Blk G, WTRR Co } \\ \text { Svy } \\ \hline \end{gathered}$	Gaines	Isaak S. \& Annie Peters	381 FM 181	Seminole	TX	79360
186025	101		S/120ac of S/240 in E/2 Sec 269, Blk G, WTRR Co Svy	Gaines	Nicholas \& Tina Neufeld	P.O. Box 2252	Seminole	TX	79360
43a									
57647	63		BLK G SEC 239 WTRR CO	Gaines	WE Berry, Jr. \%Ernest Berry III	P.O. Box 958	Seminole	TX	79360
57646	72	7,8,9	BLK G SEC 238 WTRR CO	Gaines	WE Berry, Jr. \%Ernest Berry III	P.O. Box 958	Seminole	TX	79360
57645	81		Sec 237, Blk G, WTRR Co Svy	Gaines	Triple T Farms	Rt. 1 Box 530	Seminole	TX	79360
57644	89		Sec 236, Blk G, WTRR Co Svy	Gaines	Delmon A Ellison Sr \& Georgia Ellison	P.O. Box 6	Seagraves	TX	79359
43b									
57644	89		Sec 236, Blk G, WTRR Co Svy	Gaines	Delmon A Ellison Sr \& Georgia Ellison	P.O. Box 6	Seagraves	TX	79359
176286	90	13	8.29ac Tract out of SE/4 Sec 212, Blk G, WTRR Co. Svy	Gaines	Johann \& Stephanie Reimer	P.O. Box 1301	Seminole	TX	79360
57642	103	14	Sec 235, Blk G, WTRR Co. Svy	Gaines	Triple T Farms	Rt. 1 Box 530	Seminole	TX	79360
57430	104		BLK G SEC 213 WTRR CO	Gaines	Addison Farms, LTD.	3801 102nd St.	Lubbock	TX	79423
43c									
57664	107		N/120AC E/2 Sec 247, Blk G, WTRR Co Svy	Gaines	Wayne Upton Estate Trust \% Wayne Upton Trustee	698 County Road 211	Seminole	TX	79079
57641	109		BLK G W/2 SEC 234 WTRR CO	Gaines	Gregory \& Denise Upton	RT 1 Box 18-B	Seminole	TX	79360
57640	110		E/2 Sec 234, Blk G, WTRR Co.	Gaines	Don Holt Family Farms, LLC	750 FM 473	Comfort	TX	78013
57642	103	14	Sec 235, Blk G, WTRR Co. Svy	Gaines	Triple T Farms	Rt. 1 Box 530	Seminole	TX	79360
161588	102	*possible aerial easement	Sec 246, Blk G, WTRR Co Svy, Less 8.59ac NE/Corner NE/4 \& 25ac Tract NW/4	Gaines	Agatha Loewen	P.O. Box 1872	Seminole	TX	79360
44									
186025	101		$\begin{gathered} \mathrm{S} / 120 \mathrm{ac} \text { of S/240 in E/2 Sec 269, } \\ \text { Blk G, WTRR Co Svy } \\ \hline \end{gathered}$	Gaines	Nicholas \& Tina Neufeld	P.O. Box 2252	Seminole	TX	79360

Docket No. 48724

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
161588	102		Sec 246, Blk G, WTRR Co Svy, Less 8.59ac NE/Corner NE/4 \& 25ac Tract NW/4	Gaines	Agatha Loewen	P.O. Box 1872	Seminole	TX	79360
45									
161588	102		Sec 246, Blk G, WTRR Co Svy, Less 8.59ac NE/Corner NE/4 \& 25ac Tract NW/4	Gaines	Agatha Loewen	P.O. Box 1872	Seminole	TX	79360
57666	106		W/2 Sec 247, Blk G, WTRR Co Svy	Gaines	Wayne Upton \& Bonnie Jean	698 County Road 211	Seminole	TX	79079
57664	107		N/120AC E/2 Sec 247, Blk G, WTRR Co Svy	Gaines	Wayne Upton Estate Trust \% Wayne Upton Trustee	698 County Road 211	Seminole	TX	79079
$47 \times 2{ }^{4}$									
161588	102	*possible aerial easement	Sec 246, Blk G, WTRR Co Svy, Less 8.59ac NE/Corner NE/4 \& 25ac Tract NW/4	Gaines	Agatha Loewen	P.O. Box 1872	Seminole	TX	79360
57664	107		N/120AC E/2 Sec 247, Blk G, WTRR Co Svy	Gaines	Wayne Upton Estate Trust \% Wayne Upton Trustee	698 County Road 211	Seminole	TX	79079
57665	108		$\begin{array}{\|c\|} \hline \text { S/Pt of E/2 Sec 247, Blk G, WTRR } \\ \text { Co Svy, Less } .49 \mathrm{ac} \end{array}$	Gaines	Wayne Upton \& Bonnie Jean	698 County Road 211	Seminole	TX	79079
57670	112		N/2 Sec 248, Blk G, WTRR Co	Gaines	Sylvian Wayne Upton	HC 1 Box 16	Seminole	TX	79079
48									
57670	112		$\begin{aligned} & \text { N/2 Sec 248, Blk G, WTRR Co } \\ & \text { Svy } \end{aligned}$	Gaines	Sylvian Wayne Upton	HC 1 Box 16	Seminole	TX	79079
57668	113		SE/4 Sec 248, Blk G, WTRR Co.	Gaines	Wayne Upton Estate Trust	698 County Road 211	Seminole	TX	79079
49									
57668	113		$\begin{array}{c}\text { SE/4 Sec 248, Blk G, WTRR Co. } \\ \text { Svy }\end{array}$	Gaines	Wayne Upton Estate Trust \% Wayne Upton Trustee	698 County Road 211	Seminole	TX	79079
57639	114		Sec 233, Blk G, WTRR Co Svy	Gaines	Mary Lynn Chester	304 SW 13	Seminole	TX	79079
57433	116		BLK G E/2 \& SW/4 SEC 215	Gaines	Kenneth \& Jill Darby	2104 NW Ave C	Seminole	TX	79360
50									
57433	116		BLK G E/2 \& SW/4 SEC 215 WTRR CO	Gaines	Kenneth \& Jill Darby	2104 NW Ave C	Seminole	TX	79360
57442	122		BLK G NW/4 \& SW/4 \& W/2 SE/4	Gaines	OXY USA, Inc.	5 Greenway Plaza, Suite 110	Houston	TX	77046
51									
57668	113		SE/4 Sec 248, Blk G, WTRR Co. Svy	Gaines	Wayne Upton Estate Trust \% Wayne Upton Trustee	698 County Road 211	Seminole	TX	79079
57671	117		N \& E of Hwy, Sec 249, Blk G, WTRR Co Svy	Gaines	Don Holt Family Farms, LLC	750 FM 473	Comfort	TX	78013
57673	118		BLK G 30.35 AC SE/COR N/HWY SEC 249 WTRR CO	Gaines	OXY USA, Inc.	5 Greenway Plaza, Suite 110	Houston	TX	77046
176545	119		S/480' of W/227' SW/4 Sec 232, Blk G, WTRR Co Svy	Gaines	Peter P \& Susana Klassen	457 US Hwy 385 S	Seminole	TX	79079
57630	123		N/Pt of Sec 231, Blk G, WTRR Co Svy	Gaines	Carson Bird	6625 FM 592	Shamrock	TX	79079
176602	120	*possible aerial easement	BLK G S/480' OF E/291' OF W/518' SW/4 SEC 232 WTRR CO	Gaines	Jacob Heibert	159 CR 219A	Seminole	TX	79360
52									
57433	116		BLK G E/2 \& SW/4 SEC 215 WTRR CO	Gaines	Kenneth \& Jill Darby	2104 NW Ave C	Seminole	TX	79360
57442	122		BLK G NW/4 \& SW/4 \& W/2 SE/4 SEC 216 WTRR CO	Gaines	OXY USA, Inc.	5 Greenway Plaza, Suite 110	Houston	TX	77046

Docket No. 48724
Mustang to Seminole CCN
Landowner List

Parcel ID	Map ID	Habitable Structure \#	Legal	County	Landowner	Address	City	State	Zip
57633	121		BLK G E/2 SEC 232 WTRR CO	Gaines	OXY USA, Inc.	5 Greenway Plaza, Suite 110	Houston	TX	77046
57630	123		N/Pt of Sec 231, Blk G, WTRR Co	Gaines	Carson Bird	6625 FM 592	Shamrock	TX	79079
$\underline{\underline{53}}$									
57442	122		 BLK G NW/4 \& SW/4 \& W/2 SE/4 SEC 216 WTRR CO	Gaines	Hess Corporation Donna Baker	PO Box 2040	Houston	TX	77252
57446	124		Sec. 217, Blk G, WTRR Co Svy.	Gaines	Mobil Oil Corporation	P.O. Box 53	Houston	TX	77001
54									
57630	123		$\begin{array}{\|c\|} \hline \text { N/Pt of Sec 231, Blk G, WTRR Co } \\ \text { Svy } \end{array}$	Gaines	Carson Bird	6625 FM 592	Shamrock	TX	79079
57446	124		Sec. 217, Blk G, WTRR Co Svy.	Gaines	Mobil Oil Corporation	P.O. Box 53	Houston	TX	77001
55									
57446	124		Sec. 217, Blk G, WTRR Co Svy.	Gaines	Mobil Oil Corporation	P.O. Box 53	Houston	TX	77001
56									
4196	5		W/PT SEC 29 BLK C35 ABST $1784 \& 1781$	Yoakum	Peter and Katharina Banman	P.O. Box 647	Denver City	TX	79323
55207	11		BLK C35 NW/4 SEC 24 PSL	Gaines	Peter K. \& Katharina F. Banman	P.O. Box 647	Denver City	TX	79323
172111	10		BLK C35 12.41 AC TR NE/4 SEC 25 PSL	Gaines	Kenny Beck	P.O. Box 687	Denver City	TX	79323
55218	8		BLK C35 ALL EXCP NE/4 \& N/5 AC SE/4 SEC 25 PSL	Gaines	Golden Spread Electric CO-Op, Inc. \% Mr. Steve D. Cross	905 S. Filmore, Suite 300	Amarill	TX	79101
55217	12	*possible aerial easement	BLK C35 W/2 SW/4 SEC 24 PSL	Gaines	Fourway Ginnings Association Lee Billings, Manager	1598 County Road 211	Seagraves	TX	79359
$\underline{\underline{57}}$									
57831	77		BLK G E/2 SEC 278 WTRR CO	Gaines	James G. \& Arl. B Weir	305 Gary Lane	Denver City	TX	79323
58163	78		BLK G W/2 SEC 271 WTRR CO	Gaines	Sara Klassen	529 B N Highway 385	Seminole	TX	79360
58162	79		BLK G SE/4 SEC 271 WTRR CO	Gaines	Lajean Higgins McClain	406 Golf Crest Lane	Lakeway	TX	78734
57660	80		BLK G W/2 \& SE/4 SEC 244 WTRR CO	Gaines	Rita Goodpasture Muldrow	1602 Crystal Pl.	Brownfield	TX	79316
57662	88		BLK G SEC 245 WTRR CO	Gaines	Triple T Farms	Rt. 1 Box 530	Seminole	TX	79360
57644	89		Sec 236, Blk G, WTRR Co Svy	Gaines	Delmon A Ellison Sr \& Georgia Ellison	P.O. Box 6	Seagraves	TX	79359
58159	87	10	BLK G N/2 SEC 270 WTRR CO	Gaines	Franz N. \& Martin N Klassen	707 US Highway 180E	Seminole	TX	79360
58									
57642	103	14	Sec 235, Blk G, WTRR Co. Svy	Gaines	Triple T Farms	Rt. 1 Box 530	Seminole	TX	79360
57640	110		E/2 Sec 234, Blk G, WTRR Co.	Gaines	Don Holt Family Farms, LLC	750 FM 473	Comfort	TX	78013
57639	114		Sec 233, Blk G, WTRR Co Svy	Gaines	Mary Lynn Chester	304 SW 13	Seminole	TX	79079
57431	111	*possible aerial easement	BLK G SEC 214 WTRR CO	Gaines	Fasken Land \& Minerals, LTD	6101 Holiday Hill Rd.	Midland	TX	79707
$\underline{\underline{59}}$									
57670	112		N/2 Sec 248, Blk G, WTRR Co Svy	Gaines	Sylvian Wayne Upton	HC 1 Box 16	Seminole	TX	79079
57639	114		Sec 233, Blk G, WTRR Co Svy	Gaines	Mary Lynn Chester	304 SW 13	Seminole	TX	79079
60									
57639	114		Sec 233, Blk G, WTRR Co Svy	Gaines	Mary Lynn Chester	304 SW 13	Seminole	TX	79079
57440	115		BLK G W/3 NW/4 SEC 215 WTRR CO UNDIV INT 25.0000\%	Gaines	Dockal Karen Ann Miller	1003 Killarney Ave.	Friendswood	TX	77546
57433	116		BLK G E/2 \& SW/4 SEC 215 WTRR CO	Gaines	Kenneth \& Jill Darby	2104 NW Ave C	Seminole	TX	79360

Mustang to Seminole Oversized Notice

Map

Siting and Land Rights

790 South Buchanan Street Amarillo, TX 79101
Telephone: 378-2713
Facsimile: 806-378-2724

October 23, 2018

VIA FIRST CLASS MAIL

«Utility»
«Address_1»
«City», «State» «Zip»
Dear Utility:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new $115-\mathrm{kV}$ transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H -frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. A copy of the complete application, which includes larger, more detailed maps, is available for review at SPS's offices at 790 Buchanan Street, $4^{\text {th }}$ floor, Amarillo, Texas 79101. The complete application is also available for review on the PUC's website at www.puc.state.tx.us by using the PUC's filing retrieval system and the Docket No. assigned to the application. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

Persons who wish to intervene in the docket or comment on the application should mail the original and 10 copies of their requests to intervene or comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P. O. Box 13326

Austin, Texas 78711-3326
The deadline for intervention in the proceeding is December 7th, 2018, and a letter requesting intervention should be received by the Commission by that date. Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC's Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures
Docket No. 48724
Mustang to Seminole CCN
Utilitites Notification List

Utility	Contact	Address	City	State	Zip
Golden Spead Electric Cooperative, Inc. (GSEC)	Mark Schwirtz, President	905 South Filmore, Suite 300	Amarillo	TX	$79101-3541$
Lea County Electric Cooperative, Inc. (LEC)	Bobby Ferris, Exec. VP - GM	507 9th Street	Plains	TX	79355
Lyntegar Electric Cooperative, Inc. (LCEC)	Greg Henly, CEO	P O BOX 970	Tahoka	TX	79373

ATTACHMENT 10 CITY OFFICIALS NOTIFICATION

 LETTERSiting and Land Rights
790 South Buchanan Street Amarillo, TX 79101
Telephone: 806-378-2713
Facsimile: 806-378-2724

October 23, 2018

VIA FIRST CLASS MAIL
«Mayor»
«Address_1»
«City», «State» «Zip»

Dear Mayor:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new $115-\mathrm{kV}$ transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. A copy of the complete application, which includes larger, more detailed maps, is available for review at SPS's offices at 790 Buchanan Street, $4^{\text {th }}$ floor, Amarillo, Texas 79101. The complete application is also available for review on the PUC's website at www.puc.state.tx.us by using the PUC's filing retrieval system and the Docket No. assigned to the application. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

Persons who wish to intervene in the docket or comment on the application should mail the original and 10 copies of their requests to intervene or comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P. O. Box 13326

Austin, Texas 78711-3326
The deadline for intervention in the proceeding is December 7th, 2018, and a letter requesting intervention should be received by the Commission by that date. Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC’s Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures

ATTACHMENT 10 COUNTY OFFICIAL NOTIFICATION LETTER

Siting and Land Rights
790 South Buchanan Street Amarillo, TX 79101
Telephone: 806-378-2713
Facsimile: 806-378-2724

October 23, 2018

VIA FIRST CLASS MAIL
«Judge»
«Address_1»
«City», «State» «Zip»
Dear Judge:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new $115-\mathrm{kV}$ transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H -frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. A copy of the complete application, which includes larger, more detailed maps, is available for review at SPS's offices at 790 Buchanan Street, $4^{\text {th }}$ floor, Amarillo, Texas 79101. The complete application is also available for review on the PUC's website at www.puc.state.tx.us by using the PUC's filing retrieval system and the Docket No. assigned to the application. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

Persons who wish to intervene in the docket or comment on the application should mail the original and 10 copies of their requests to intervene or comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P. O. Box 13326

Austin, Texas 78711-3326
The deadline for intervention in the proceeding is December 7th, 2018, and a letter requesting intervention should be received by the Commission by that date. Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC’s Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures
Docket No. 48724
Mustang to Seminole CCN

	Contact	Address	City	State	Zip
Cities:					
Denver City	Tommy Hicks, Mayor	P O Box 1539	Denver City	TX	79323
Seminole	John Belchers, Mayor	302 S Main Street	Seminole	TX	79360-4346
Counties:					
Gaines	Tom Keyes, Judge	101 South Main Street, Rm 201 P O Box 847	Seminole	TX	79360
Yoakum	Jim Barron, Judge	603 Cowboy Way	Plains	TX	79355

Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)

PUBLIC UTILITY COMMISSION OF TEXAS DOCKET NO. 48724

Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115 -kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new $115-\mathrm{kV}$ transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The Mustang Substation will have a new $115-\mathrm{kV}$ terminal added to the south of the $115-\mathrm{kV}$ bus for the new $115-\mathrm{kV}$ line. The existing Seminole Substation will have a new $115-\mathrm{kV}$ terminal added to the south of the $115-\mathrm{kV}$ bus for the new $115-\mathrm{kV}$ line.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily single-circuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit. The proposed transmission line will be constructed primarily on new right-of-way with a proposed easement width of 70 feet. In some circumstances, a wider right-of-way easement may be necessary, but these locations and easement widths cannot be determined until a route for the Proposed Project is approved and surveyed. In addition to the permanent easement, for construction of the route selected by the PUC, SPS will purchase a 30 foot temporary easement adjacent to the route, and an additional $100 \mathrm{ft} . \mathrm{x} 300 \mathrm{ft}$. temporary easement for each angle that is 45 degrees or more.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Persons with questions about the transmission line may contact SPS's representatives Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868. Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. Larger, more detailed routing maps may be viewed at SPS's offices at 790 South

Buchanan Street, $4^{\text {th }}$ Floor, Amarillo, Texas 79101. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

All routes and route segments included in this notice are available for selection and approval by the Public Utility Commission of Texas.

Persons who are affected by the proposed transmission line and wish to intervene in the docket or comment on the applicant's application should mail the original and 10 copies of their request to intervene or their comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Ave.
P.O. Box 13326

Austin, Texas 78711-3326
Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time of the request for intervention is mailed to the PUC. The only way to fully participate in the PUC's decision on where to locate the transmission line is to intervene in the docket. It is important for an affected person to intervene because the utility is not obligated to keep affected persons informed of the PUC's proceedings and cannot predict which route may or may not be approved by the PUC.

The deadline for intervention in the proceeding is December 7th, 2018, and the PUC should receive a letter from you requesting intervention by that date.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC's Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC's Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

PRIMARY ALTERNATIVE ROUTES MUSTANG TO SEMINOLE 115-kV PROJECT

Route	Composition	Length (miles)
A	$1 a-3-13-16-18-20-32-37-39-41-44-45-47-48-51-54-55$	21.70
B	$1 \mathrm{a}-3-13-16-18-25-33-36-40-41-44-45-47-48-49-52-54-55$	19.32
C	$1 \mathrm{a}-3-13-16-24-28-33-38-39-41-44-45-47-59-60-52-54-55$	19.10
D	$1 \mathrm{a}-3-13-16-18-25-33-36-57-43 \mathrm{~b}-58-60-50-53-55$	19.19
E	$1 \mathrm{a}-3-13-16-24-27-30-43 \mathrm{a}-43 \mathrm{~b}-58-60-50-53-55$	17.30
F	$1 \mathrm{a}-3-13-16-19-21-22-26-43 \mathrm{a}-43 \mathrm{~b}-58-60-52-54-55$	17.38
G	$1 \mathrm{a}-3-13-17 \mathrm{a}-17 \mathrm{~b}-21-22-26-43 \mathrm{a}-43 \mathrm{~b}-58-60-52-54-55$	17.34
H	$1 \mathrm{a}-2 \mathrm{a}-4-6-12-22-26-43 \mathrm{a}-43 \mathrm{~b}-43 \mathrm{c}-47-48-49-52-54-55$	19.49
I	$1 \mathrm{a}-2 \mathrm{a}-56-17 \mathrm{~b}-21-22-26-43 \mathrm{a}-43 \mathrm{~b}-58-60-50-53-55$	17.36
J	$1 \mathrm{a}-2 \mathrm{a}-4-6-12-22-26-43 \mathrm{a}-43 \mathrm{~b}-58-60-52-54-55$	17.48

Xcel Energy, Inc.
Mustang to Seminole
115-kV Transmission Line Project
Yoakum and Gaines Counties, Texas

Southwestern Public Service Company (SPS) a subsidiary of Xcel Energy Inc. (Xcel) has filed an application with the Public Utility Commission of Texas (PUC) to amend its Certificate of Convenience and Necessity (CCN) to construct the proposed Mustang to Seminole, $115-\mathrm{kV}$, transmission line. Various combinations of transmission line segments form routing options for the project. The Mustang to Seminole project consists of 48 primary segments that comprise 10 different routes that very between 17 and 22 miles. The segments forming those routing options are described below.

Segment 1a

Segment 1a originates in the southwest corner of Xcel Energy's existing Mustang Substation located adjacent to Golden Spread Electric Cooperative's power plant, approximately 0.65 mile northeast of the County Road (CR) 355 and CR 390 intersection in Section 887 in Yoakum County, Texas. Segment 1a exits the substation and extends west for approximately 0.11 mile, installed as a second circuit on the approved Mustang to Shell $115-\mathrm{kV}$ transmission line, and parallel to the south side of an existing transmission line. It turns to the south and extends south for approximately 0.50 mile, as a second circuit on the approved Mustang to Shell transmission line ${ }^{1}$, and parallel to the east side of another existing transmission line. The segment then turns and travels east for approximately .11 mile, paralleling the north side of the approved Mustang to Shell transmission line, which is located north of another existing transmission line, along the southern boundary of Section 887. The segment terminates at its intersection with Segments 2a and 3, approximately 0.40 mile east of the CR 355 and CR 390 intersection.

Segment 2a

Segment 2a originates at its intersection with Segments 1a and 3, north of CR 390, on the north side of the approved Mustang to Shell $115-\mathrm{kV}$ transmission line and another existing transmission line, along the southern boundary of Section 887, approximately 0.40 mile east of the CR 355 and CR 390 intersection. It travels east, paralleling the north side of the approved Mustang to Shell $115-\mathrm{kV}$ transmission line for approximately 0.42 mile before it angles to the northeast and parallels the Mustang to Shell transmission line for an additional 0.11 mile. The segment then turns east and extends for approximately 0.12 mile, immediately crossing the approved Mustang to Shell $115-\mathrm{kV}$ transmission line and then CR 365, and enters Section 886. The segment then proceeds east for approximately 0.38 mile, turns to the south and extends

[^3]for approximately 0.13 mile as it crosses an existing transmission line, the southern boundary of Section 886, and CR 390, and terminates at its intersection with Segments 4 and 56, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29.

Segment 3

Segment 3 originates at its intersection with Segments 1a and 2a north of CR 390, on the north side of the approved Mustang to Shell $115-\mathrm{kV}$ transmission line, another existing transmission line, and the southern boundary of Section 887, approximately 0.4 mile east of the CR 355 and CR 390 intersection. The segment proceeds south for approximately 0.42 mile as it crosses the approved Mustang to Shell $115-\mathrm{kV}$ transmission line, the other existing transmission line, CR 390, and extends through Section 28 to the Yoakum/Gaines County Line. The segment terminates at its intersection with Segment 13, on the Yoakum/Gaines County Line at the northwest corner of Section 25, approximately 0.55 mile southeast of the CR 355 and CR 390 intersection.

Segment 4

Segment 4 originates at its intersection with Segments 2a and 56, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29. The segment travels east, paralleling the south side of CR 390 for approximately 2.0 miles, and terminates at its intersection with Segment 6, along the northern boundary of Section 29, approximately 0.4 mile east of the CR 415 and CR 390 intersection.

Segment 6

Segment 6 originates at its intersection with Segment 4 on the south side of CR 390, along the northern boundary of Section 29, approximately 0.4 mile east of the CR 415 and CR 390 intersection. The segment proceeds south for approximately 0.36 mile through Section 29 and terminates at its intersection with Segment 12, on the Yoakum/Gaines County Line, at the northwest corner of Section 22, approximately 0.54 mile southeast of the CR 415 and CR 390 intersection.

Segment 12

Segment 12 originates at its intersection with Segment 6, on the Yoakum/Gaines County Line, at the northwest corner of Section 22, approximately 0.54 mile southeast of the CR 415 and CR 390 intersection. The segment travels to the south for approximately 1.0 mile, paralleling the western boundary of Section 22, and crosses State Highway (SH) 83 into Section 15. The segment then continues south for approximately 1.0 mile, paralleling the western boundary of Section 15, and terminates at its intersection with Segments 21 and 22 in the southwest corner of Section 15, approximately 2.44 miles southeast of the CR 211 and SH 83 intersection.

Segment 13

Segment 13 originates at its intersection with Segment 3, on the Yoakum/Gaines County Line at the northwest corner of Section 25, approximately 0.55 mile southeast of the CR 355 and CR 390 intersection. The segment travels to the south for approximately 0.16 mile, paralleling the western boundary of Section 25 , and then crosses McKenzie Draw. It then continues south for approximately 0.82 mile, paralleling the western boundary of Section 25, and terminates at its intersection with Segments 16 and 17a in the southwest corner of Section 25, on the north side of SH 83 approximately 0.99 mile west of the CR 211 and SH 83 intersection.

Segment 16

Segment 16 originates at its intersection with Segments 13 and 17a in the southwest corner of Section 25, on the north side of SH 83, approximately 0.99 mile west of the CR 211 and SH 83 intersection. The segment extends south for approximately 1.02 miles as it crosses SH 83 and parallels the western boundary of Section 12. It terminates at its intersection with Segments 18, 19, and 24, in the southwest corner of Section 12, approximately 1.36 miles southwest of the CR 211 and SH 83 intersection.

Segment 17a

Segment 17a originates at its intersection with Segments 13 and 16 in the southwest corner of Section 25, on the north side of SH 83, approximately 0.99 mile west of the CR 211 and SH 83 intersection. The segment travels to the east for approximately .97 mile, paralleling the north side of SH 83 , and terminates at its intersection with Segments 17 b and 56, northwest of the SH 83 and CR 211 intersection in the southeast corner of Section 25.

Segment 17b

Segment 17b originates at its intersection with Segments 17a and 56, northwest of the SH 83 and CR 211 intersection in the southeast corner of Section 25 . The segment extends south for approximately 0.20 mile as it crosses SH 83 and parallels the west side of CR 211 before it angles to the southeast and proceeds for approximately 0.09 mile, where it crosses CR 211 into Section 13. The segment then turns back to the south and parallels the east side of CR 211 for approximately 0.72 mile and terminates at its intersection with Segments 19 and 21, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection.

Segment 18

Segment 18 originates at its intersection with Segments 16, 19, and 24, in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment proceeds west for approximately 0.33 mile, as it enters Section 11, and parallels the southern boundary of Section 11. The segment then angles and extends southwest for approximately 0.15 mile, crossing into Section 8 . The segment then turns and travels west for approximately 0.54 mile, paralleling the northern boundary of Section 8 and terminates at its intersection with Segments 20 and 25, in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection.

Segment 19

Segment 19 originates at its intersection with Segments 16, 18, and 24, in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment travels east for approximately 1.01 miles, paralleling the southern boundary of Section 12, crossing CR 211, and entering Section 13. Here it terminates at its intersection with Segments 17b and 21, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection.

Segment 20

Segment 20 originates at its intersection with Segments 18 and 25 , in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection. The segment proceeds west, immediately entering Section 9, and paralleling the northern boundary of Section 9 for approximately 1.0 mile. It then enters Section 41, and parallels the northern boundary of Section 41 for approximately 0.5 mile where it crosses an existing transmission line then continues west paralleling the northern boundary of Section 41 for approximately 0.5 mile and enters Section 42 . Segment 20 then turns to the south and parallels the eastern boundary of Section 42 for approximately 0.44 mile where it approaches the eastern/northeastern side of the curve on SH 214. Here it angles to the southeast and parallels SH 214 for approximately 0.12 mile as it crosses into Section 41 before angling to the south. It then travels south and parallels the east side of SH 214 for approximately 0.46 mile as it crosses CR 226 and enters Section 309. It then continues south, paralleling the east side of SH 214 for approximately 2.0 miles along the western boundaries of Section 309 and Section 310 where it crosses CR 222 and terminates at its intersection with Segment 32, southeast of the SH 214 and CR 222 intersection in the northwest corner of Section 311.

Segment 21

Segment 21 originates at its intersection with Segments 17b and 19, in the southwest corner of Section 13, approximately 0.98 mile south of the SH 83 and CR 211 intersection. It extends east for approximately 1.68 miles, paralleling the southern boundaries of Sections 13 and 14 and crosses McKenzie Draw. Segment 21 then continues east an additional 0.32 mile, paralleling the southern boundary of Section 14, enters Section 15 and terminates at its intersection with Segments 12 and 22, in the southwest corner of Section 15 approximately 2.23 miles southeast of the SH 83 and CR 211 intersection.

Segment 22

Segment 22 originates at its intersection with Segments 12 and 21, in the southwest corner of Section 15 approximately 2.23 miles southeast of the SH 83 and CR 211 intersection. It travels south, immediately enters the northwest corner of Section 4 and parallels the western boundary of Section 4 for approximately 0.9 mile where it crosses McKenzie Draw, then parallels the western boundary of Section 4 an additional 0.1 mile where it crosses CR 226 and enters the northwest corner of Section 208. Segment 22 then continues south, paralleling the western boundary of Section 208 for approximately 0.11 mile before angling southwest and extending approximately 0.11 mile into Section 240 . The segment then turns and travels south for approximately 0.3 mile, paralleling the eastern boundary of Section 240 and terminating at its
intersection with Segment 26, along the eastern boundary of Section 240 approximately 2.04 miles southeast of the CR 226 and CR 211 intersection.

Segment 24

Segment 24 originates at its intersection with Segments 16, 18 and 19, in the southwest corner of Section 12, approximately 1.36 miles southwest of the SH 83 and CR 211 intersection. The segment travels south, immediately enters Section 7 and parallels the western boundary of Section 7 for approximately 0.27 mile before angling southwest and extending for approximately 0.13 mile into Section 8 . Segment 24 then turns south and parallels the eastern boundary of Section 8 for approximately 0.13 mile where it crosses a tributary of McKenzie Draw and continues south, parallel to the eastern boundary of Section 8, an additional 0.50 mile and crosses CR 226 into Section 275. The segment then continues south for approximately 1.0 mile, paralleling the west side of CR 213 and entering Section 276. Segment 24 then continues south for approximately 1.01 miles, parallel to the eastern boundary of Section 276, crosses CR 222 into Section 277 and terminates at its intersection with Segments 27 and 28, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection.

Segment 25

Segment 25 originates at its intersection with Segments 18 and 20, in the northwest corner of Section 8, approximately 1.43 miles southeast of the SH 83 and CR 217 intersection. It travels south, paralleling the western boundary of Section 8 for approximately 0.75 mile, crosses a tributary of McKenzie Draw, then parallels the western boundary of Section 8 for an additional 0.25 mile and crosses CR 226 into the northwest corner of Section 275. Segment 25 then continues south for approximately 2.0 miles, paralleling the western boundaries of Section 275 and Section 276, and crosses CR 222 into Section 277, where it terminates at its intersection with Segment 28 and 33, southeast of the CR 215 and CR 222 intersection in the northwest corner of Section 277.

Segment 26

Segment 26 originates at its intersection with Segment 22, along the eastern boundary of Section 240 approximately 2.04 miles southeast of the CR 226 and CR 211 intersection. It proceeds south for approximately 1.49 miles, paralleling the eastern boundaries of Section 240 and Section 239, and terminates at its intersection with Segments 30 and 43a on the north side of CR 222, in the southeast corner of Section 239 approximately 2.0 miles east of the CR 222 and CR 211 intersection.

Segment 27

Segment 27 originates at its intersection with Segments 24 and 28, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection. The segment proceeds east, immediately crossing into Section 272 and parallels the south side of CR 222 for approximately 1.0 mile as it crosses CR 211 and enters Section 243. The segment then continues east paralleling the south side of CR 222 for approximately 0.97 mile before angling northeast and extending approximately 0.04 mile as it crosses to the north side of CR 222 and into Section 242. It then terminates at its intersection with Segment 30, in the southeast corner of Section 242, approximately 1.0 mile east of the CR 222 and CR 211 intersection.

Segment 28
Segment 28 originates at its intersection with Segments 24 and 27, in the northeast corner of Section 277, approximately 1.0 mile west of the CR 222 and CR 211 intersection. The segment travels west for approximately 0.98 mile, paralleling the south side of CR 222 and terminates at its intersection with Segments 25 and 33, in the northwest corner of Section 277, southeast of the CR 222 and CR 215 intersection.

Segment 30

Segment 30 originates at its intersection with Segment 27, in the southeast corner of Section 242, approximately 1.0 mile east of the CR 222 and CR 211 intersection. It travels east for approximately 1.0 mile, immediately crossing into Section 239, then paralleling the north side of CR 222 and terminates at its intersection with Segments 26 and 43a, in the southeast corner of Section 239, approximately 2.0 miles east of the CR 222 and CR 211 intersection.

Segment 32

Segment 32 originates at its intersection with Segment 20, southeast of the SH 214 and CR 222 intersection in the northwest corner of Section 311. It travels south approximately 0.54 mile, paralleling the east side of SH 214 to the SH 214 and CR 219 intersection. It then curves southeast and parallels the east-northeast side of SH 214 for approximately 0.47 mile and enters the northwestern portion of Section 312. It then travels southeast parallel to the east-northeast side of SH 214 for approximately 0.47 mile and crosses an existing transmission line. It then continues southeast, parallel to the east-northeast side of SH 214 for an additional 0.81 mile as it crosses the southwestern corner of Section 305 and enters Section 304. The segment then terminates at its intersection with Segment 37 on the east-northeast side of SH 214, approximately 0.56 mile northwest of the SH 214 and CR 218 intersection.

Segment 33

Segment 33 originates at the intersection with Segment 25 and 28, southeast of the CR 215 and CR 222 intersection in the northwest corner of Section 277. It travels south for approximately 1.98 miles, parallel to the east side of CR 215 along the western boundaries of Section 277 and Section 278. The segment then terminates at its intersection with Segments 36 and 38, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection.

Segment 36

Segment 36 originates at its intersection with Segment 33 and 38, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection. It travels to the east for approximately 0.98 mile, paralleling the southern boundary of Section 278 and terminates at its intersection with Segments 40 and 57 in the southeast corner of Section 278, approximately 1.45 miles northwest of the CR 211 and CR 216 intersection.

Segment 37

Segment 37 originates at its intersection with Segment 32 on the east-northeast side of SH 214 in the northwest corner of Section 304, approximately 0.56 mile northwest of the SH 214 and CR 218 intersection. It travels southeast for approximately 1.33 miles, paralleling the east-northeast side of SH 214 across Section 304. The segment then crosses into the northeast corner of Section 303 and continues southeast for approximately 0.20 mile, before crossing CR 215 and entering Section 280. The segment then terminates at its intersection with Segments 38 and 39, east of the SH 214 and CR 215 intersection in the northwestern portion of Section 280.

Segment 38

Segment 38 originates at its intersection with Segment 33 and 36, on the east side of CR 215 in the southwest corner of Section 278, approximately 1.2 miles north of the SH 214 and CR 215 intersection. It travels south, crossing into Section 279, and parallels the east side of CR 215 for approximately 1.17 miles along the western boundaries of Section 279 and Section 280 and terminates at its intersection with Segments 37 and 39 in the northwestern portion of Section 280, east of the SH 214 and CR 215 intersection.

Segment 39

Segment 39 originates at its intersection with Segments 37 and 38 in the northwestern portion of Section 280, east of the SH 214 and CR 215 intersection. It travels southeast and parallels the east-northeast side of SH 214 for approximately 0.46 mile, then turns to the east and extends across Section 280 for approximately 0.69 mile where it terminates at its intersection with Segments 40 and 41 at the eastern boundary of Section 280, approximately 1.04 miles southeast of the SH 214 and CR 215 intersection.

Segment 40

Segment 40 originates at its intersection with Segments 36 and 57 in the southeast corner of Section 278, approximately 1.4 miles northwest of the CR 211 and CR 216 intersection. It travels south for approximately 1.52 miles, immediately crossing into Section 279 and paralleling the eastern boundaries of Section 279 and Section 280. It then terminates at its intersection with Segments 39 and 41 along the eastern boundary of Section 280, approximately 1.04 miles southeast of the SH 214 and CR 215 intersection.

Segment 41

Segment 41 originates at its intersection with Segments 39 and 40 along the eastern boundary of Section 280, approximately 1.04 miles southeast of the SH 214 and CR 215 intersection. It travels south and parallels the eastern boundary of Section 280 for approximately 0.5 mile to the southern boundary of Section
280. From here it turns east, crosses into Section 269, and parallels the southern boundary of Section 269 approximately 0.5 mile. It then terminates at its intersection with Segment 44 along the southern boundary of Section 269, approximately 1.1 miles southwest of the CR 211 and CR 216 intersection.

Segment 43a

Segment 43a originates at its intersection with Segments 26 and 30, in the southeast corner of Section 239 approximately 2.0 miles east of the CR 222 and CR 211 intersection. It extends south for approximately 2.04 miles, immediately crossing CR 222 and parallels the eastern boundaries of Section 238 and Section 237, crossing into Section 236. It then terminates at its intersection with Segments 43b and 57, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection.

Segment 43b

Segment 43b originates at its intersection with Segments 43a and 57, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection. It travels south for approximately 0.98 mile, paralleling the eastern boundary of Section 236, where it angles to the southeast and extends for approximately 0.04 mile as it crosses CR 216 into the northwest corner of Section 213. The segment then turns back to the south and extends approximately 0.98 mile paralleling the western boundary of Section 213. It then turns to the west and extends approximately .01 mile as it crosses into the southeast corner of Section 235 and terminates at its intersection with Segments 43c and 58, approximately 1.4 miles northwest of the CR 205 and CR 212 intersection.

Segment 43c

Segment 43c originates at its intersection with Segments 45 and 47 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection. It extends east, immediately crossing into Section 234, and parallels the northern boundary of Section 234 for approximately 0.60 mile, where it angles northeast and extends for approximately 0.1 mile as it crosses into Section 235. The segment then turns back to the east and parallels the southern boundary of Section 235 approximately 0.27 mile and terminates at its intersection with Segments 43 b and 58, in the southeast corner of Section 235 approximately 2.2 miles southeast of the CR 211 and CR 216 intersection.

Segment 44

Segment 44 originates at its intersection with Segment 41 along the southern boundary of Section 269, approximately 1.1 miles southwest of the CR 211 and CR 216 intersection. It extends east for approximately 0.51 mile as it parallels the southern boundary of Section 269 and crosses CR 211 into Section 246. It then terminates at its intersection with Segment 45 in the southwest corner of Section 246, approximately 1.0 mile south of the CR 211 and CR 216 intersection.

Segment 45

Segment 45 originates at its intersection with Segment 44 in the southwest corner of Section 246, approximately 1.0 mile south of the CR 211 and CR 216 intersection. It travels east parallel to the southern boundary of Section 246 for approximately 0.36 mile, then angles to the southeast and extends approximately 0.13 mile as it crosses into Section 247. Segment 45 then angles back to the east and parallels the northern boundary of Section 247 for approximately 0.48 mile where it terminates at its intersection with Segments 43c and 47 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection.

Segment 47

Segment 47 originates at its intersection with Segments 43c and 45 in the northeast corner of Section 247, approximately 1.4 miles southeast of the CR 211 and CR 216 intersection. It extends south for approximately 1.01 miles paralleling the eastern boundary of Section 247, and crosses CR 212 into Section 232, where it terminates at its intersection with Segments 48 and 59, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection.

Segment 48

Segment 48 originates at its intersection with Segments 47 and 59, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection. It extends south for approximately 0.86 mile, paralleling the eastern boundary of Section 232 and terminates at its intersection with Segments 49 and 51, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection.

Segment 49

Segment 49 originates at its intersection with Segments 48 and 51, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection. It travels south approximately 0.11 mile, paralleling the eastern boundary of Section 232, and then turns east on the north side of an existing transmission line. It then extends to the east parallel to the north side of the existing transmission line along the southern boundary of Section 233 for approximately 1.04 miles and crosses into Section 215 where it terminates at its intersection with Segments 50, 52, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection.

Segment 50

Segment 50 originates at its intersection with Segments 49, 52, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection. It extends southeast for approximately 0.13 mile as it crosses into Section 216 and turns to the east. The segment travels east and parallels the northern boundary of Section 216 approximately 0.34 mile where it terminates with its intersection with Segment 53 approximately 1.12 miles northwest of the CR 208 and CR 205 intersection.

Segment 51

Segment 51 originates at its intersection with Segments 48 and 49, approximately 0.12 mile north of an existing transmission line, in the southeastern portion of Section 232 approximately 1.0 mile east-northeast of the CR 211 and SH 214 intersection. It extends to the southwest approximately 0.11 mile, turns and extends south for approximately 0.03 mile crossing the existing transmission line and entering the northeast corner of Section 249. The segment then travels south for approximately 0.93 mile in the eastern portion of Section 249. At this point, the segment angles to the southeast and extends for approximately 0.17 mile, as it crosses the southwest corner of Section 232, crosses CR 208, and extends into Section 231. Segment 51 then turns to the east and extends approximately 0.85 mile. It then terminates at its intersection with Segments 52 and 54 in the northeast corner of Section 231 approximately 0.96 mile east-southeast of the CR 208 and SH 214 intersection.

Segment 52

Segment 52 originates at its intersection with Segments 49, 50, and 60, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection. It extends south approximately 0.05 mile as it crosses into Section 216, paralleling the east side of an existing transmission line. It then angles to the southwest and extends approximately 0.10 mile where it intersects the existing transmission line along the western boundary of Section 216. At this point, Segment 52 will be installed as a second circuit on the existing transmission line and extend south approximately 0.57 mile. Segment 52 then angles to the southwest, leaves the existing transmission line and enters Section 232 as it extends approximately 0.23 mile before turning back to the south. The segment extends south approximately 0.14 mile as it crosses CR 208 and enters Section 231. It terminates at its intersection with Segments 51 and 54, in the northeast corner of Section 231 approximately 0.96 mile east-southeast of the CR 208 and SH 214 intersection.

Segment 53

Segment 53 originates at its intersection with Segment 50, along the northern boundary of Section 216 approximately 1.12 miles northwest of the CR 205 and CR 208 intersection. It extends south for approximately 1.0 mile through the center of section 216 and crosses CR 208. Segment 53 then extends for approximately 0.05 mile south where it crosses an existing transmission line, then continues south an additional 0.01 mile and terminates at its intersection with Segments 54 and 55 on an existing transmission line, in the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection.

Segment 54

Segment 54 originates at its intersection with Segments 51 and 52, south of CR 208 in the northeast corner of Section 231 approximately 1.0 mile east-southeast of the CR 208 and SH 214 intersection. It extends east approximately 0.08 mile as it enters Section 217 and intersects an existing transmission line. From this point, Segment 54 extends east as a second circuit installed on an existing transmission line for approximately 0.48 mile as it parallels the south side of another existing transmission line and terminates at
its intersection with Segments 53 and 55 along the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection.

Segment 55

Segment 55 originates at its intersection with Segments 53 and 54, south of CR 208 on an existing transmission line in the northern portion of Section 217, approximately 0.52 mile west-southwest of the CR 205 and CR 208 intersection. It extends east for approximately 0.36 mile, installed as a second circuit on an existing transmission line that parallels the south side of another existing transmission line. It then angles south and proceeds an additional 0.07 mile installed as a second circuit on an existing transmission line. Segment 55 then leaves the existing transmission line structures and extends south 0.01 mile, turns east and proceeds approximately 0.08 mile and terminates at the existing Seminole Substation, southwest of the CR 205 and CR 208 intersection.

Segment 56

Segment 56 originates at its intersection with Segments 2a and 4, southeast of the CR 375 and CR 390 intersection, in the northwest corner of Section 29. The segment travels south parallel to the east side of CR 375 for approximately 0.36 mile where it crosses the Yoakum/Gaines County Line and enters Section 24. The segment then continues south, parallel to the east side of CR 211 for approximately 0.49 mile, where it angles to the southwest and extends approximately 0.06 mile as it crosses CR 211, enters Section 25, and crosses McKenzie Draw before turning to the south. Segment 56 then travels south paralleling the west side of CR 211 for approximately 0.46 mile and terminates at its intersection with Segments 17a and 17b northwest of the SH 83 and CR 211 intersection, in the southeast corner of Section 25.

Segment 57

Segment 57 originates at its intersection with Segments 36 and 40 in the southeast corner of Section 278, approximately 1.4 miles northwest of the CR 211 and CR 216 intersection. It travels east for approximately 1.0 mile, immediately crossing into Section 271 and paralleling the southern boundary of Section 271, then crossing CR 211 and entering Section 244. Segment 57 then travels east for approximately 0.63 mile, parallel to the southern boundary of Section 244. It then angles to the southeast and extends approximately 0.12 mile as it crosses into Section 245. It then turns back to the east and parallels the northern boundary of Section 245 for approximately 0.25 mile and the northern boundary of Section 236 for approximately 1.00 mile. It then terminates at its intersection with Segments 43a and 43b, in the northeast corner of Section 236 approximately 2.2 miles northeast of the CR 211 and CR 216 intersection.

Segment 58

Segment 58 originates at its intersection with Segments 43b and 43c, in the southeast corner of Section 235 approximately 1.4 miles northwest of the CR 205 and CR 212 intersection. It extends to the south for approximately 0.95 mile, immediately entering Section 234 and parallel to the eastern boundary of Section 234. It then angles to the southwest and extends approximately 0.04 mile, turns back to the south and proceeds for approximately 0.04 mile as it crosses CR 212 into the northeast corner of Section 233 and terminates at its intersection with Segments 59 and 60 approximately 1.03 miles west of the CR 205 and CR 212 intersection.

Segment 59

Segment 59 originates at its intersection with Segments 47 and 48, in the northeast corner of Section 232 approximately 0.99 mile east of the CR 211 and CR 212 intersection. It travels east paralleling the south side of CR 212 for approximately 0.99 mile and terminates at its intersection with Segments 58 and 60 in the northeast corner of Section 233, approximately 1.03 miles west of the CR 205 and CR 212 intersection.

Segment 60

Segment 60 originates at its intersection with Segments 58 and 59 in the northeast corner of Section 233 approximately 1.03 miles west of the CR 205 and CR 212 intersection. It extends southeast approximately 0.05 mile, crossing into Section 215 before turning to the south. The segment travels south approximately 0.82 mile paralleling the western boundary of Section 215, then angles southeast and extends approximately 0.11 mile where it terminates at its intersection with Segments 49, 50, and 52, in the southwest corner of Section 215 approximately 1.41 miles northwest of the CR 205 and CR 208 intersection.

List of Newspapers

Lubbock Avalanche-Journal
710 Avenue J
Lubbock, TX 79401
806-762-8844

Siting and Land Rights
790 South Buchanan Street Amarillo, TX 79101
Telephone: 806-378-2713
Facsimile: 806-378-2724

October 23, 2018

Julie Wicker
Wildlife Habitat Assessment Program
Wildlife Division
Texas Parks and Wildlife Department
4200 Smith School Road
Austin, Texas 78744
Dear Ms. Wicker:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new $115-\mathrm{kV}$ transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The Mustang Substation will have a new $115-\mathrm{kV}$ terminal added to the south of the 115kV bus for the new $115-\mathrm{kV}$ line. The existing Seminole Substation will have a new 115kV terminal added to the south of the $115-\mathrm{kV}$ bus for the new $115-\mathrm{kV}$ line.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed for your review is a copy of the application, which includes the Environmental Assessment of the proposed project. All routes and route segments included in this notice are available for selection and approval by the Public Utility Commission of Texas.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures

Siting and Land Rights
790 South Buchanan Street Amarillo, TX 79101
Telephone: 806-378-2713
Facsimile: 806-378-2724

October 23, 2018

Michele Gregg
Office of Public Utility Counsel
P.O. Box 12397

Austin, TX 78711-2397
Dear Ms. Gregg:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new 115-kV transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. A copy of the complete application, which includes larger, more detailed maps, is available for review at SPS's offices at 790 Buchanan Street, $4^{\text {th }}$ floor, Amarillo, Texas 79101. The complete application is also available for review on the PUC's website at www.puc.state.tx.us using the PUC's filing retrieval system and the Docket No. assigned to the application. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

Persons who wish to intervene in the docket or comment on the application should mail the original and 10 copies of their requests to intervene or comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P. O. Box 13326

Austin, Texas 78711-3326
The deadline for intervention in the proceeding is December 7th, 2018, and a letter requesting intervention should be received by the Commission by that date. Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC’s Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures

Siting and Land Rights
790 South Buchanan Street Amarillo, TX 79101
Telephone: 806-378-2713
Facsimile: 806-378-2724

October 23, 2018

DOD Siting Clearinghouse
3400 Defense Pentagon, Room 5C646
Washington, DC 20301-3400
Dear Department of Defense:
Southwestern Public Service Company ("SPS"), a subsidiary of Xcel Energy Inc., is providing notice of its application to amend its Certificate of Convenience and Necessity ("CCN") to construct and operate a 115-kilovolt ("kV") primarily single circuit transmission line between the existing Mustang Substation, located in Yoakum County, Texas and the existing Seminole Substation, located in Gaines County, Texas ("Proposed Project"). SPS has filed an application with the Public Utility Commission of Texas ("Commission" or "PUC") (Docket No. 48724- Application of Southwestern Public Service Company to Amend a Certificate of Convenience and Necessity for a Proposed 115-kV Transmission Line Within Yoakum and Gaines Counties (Mustang to Seminole)) and is requesting the Commission's approval of the Proposed Project. The Proposed Project is needed for reliability purposes, as identified by the Southwest Power Pool, Inc., to address thermal overload and voltage support.

The Proposed Project will involve the construction of a new 115-kV transmission line, which will originate at the existing Mustang Substation, located approximately 0.65 mile northeast of the intersection of County Road ("CR") 390 and CR 355, approximately five miles east of Denver City, Texas in Yoakum County. The Proposed Project will terminate at the existing Seminole Substation, located southwest of the intersection of CR 205 and CR 208 and 3.8 miles north-northwest of Seminole, Texas in Gaines County.

The proposed $115-\mathrm{kV}$ transmission line will be constructed utilizing primarily singlecircuit, single-pole steel structures. SPS may use double-circuit wood or steel H-frames for parts of the proposed routing where there is an existing circuit.

SPS is proposing ten routes that range between 17 and 22 miles in length. The total cost, including the transmission line and substation costs, is approximately $\$ 15.9$ to $\$ 18.1$ million depending on which route is selected.

Enclosed are a copy of a written description of the segments to be used for the alternative routes and a map of the proposed project. A copy of the complete application, which includes larger, more detailed maps, is available for review at SPS's offices at 790 Buchanan Street, $4^{\text {th }}$ floor, Amarillo, Texas 79101. The complete application is also available for review on the PUC's website at www.puc.state.tx.us by using the PUC's filing retrieval system and the Docket No. assigned to the application. Information about the proposed project is also accessible on Xcel Energy's website Power for the Plains at http://www.powerfortheplains.com.

Persons who wish to intervene in the docket or comment on the application should mail the original and 10 copies of their requests to intervene or comments to:

Public Utility Commission of Texas
Central Records
Attn: Filing Clerk
1701 N. Congress Avenue
P. O. Box 13326

Austin, Texas 78711-3326
The deadline for intervention in the proceeding is December 7th, 2018 and a letter requesting intervention should be received by the Commission by that date. Persons who wish to intervene in the docket must also mail a copy of their request for intervention to all parties in the docket and all persons that have pending motions to intervene, at or before the time the request for intervention is mailed to the PUC.

The PUC has a brochure titled "Landowners and Transmission Line Cases at the PUC." Copies of the brochure are available from Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868 or may be downloaded from the PUC's website at www.puc.state.tx.us. To obtain additional information about this docket, you may contact the PUC’s Customer Assistance Hotline at 512-936-7120 or 888-782-8477. Hearing- and speech-impaired individuals with text telephones ("TTY") may contact the PUC’s Customer Assistance Hotline at 512-936-7136 or toll free at 800-735-2989. In addition to the intervention deadline, other important deadlines may already exist that affect your participation in this docket. You should review the orders and other filings already made in the docket.

If you have any questions or need additional information, please call Nisha Fleischman at 806-378-2713 or James Bagley at 806-378-2868.

Sincerely,

Sean L. Frederiksen, Manager
Siting and Land Rights
Enclosures

[^0]: ${ }^{1}$ Information on the models, needs assessments and solutions used in the 2016 ITPNT can be found on the SPP website http://www.spp.org/engineering/transmission-planning

[^1]: ${ }^{1}$ A Short-Term Reliability Project includes any upgrade that would otherwise be considered a Competitive Upgrade but is needed to meet a time sensitive need. See Attachment Y, Section I. 3 of the SPP Tariff.

[^2]: ${ }^{1}$ The Mustang to Shell Transmission Line was approved by the PUC in Docket No. 47585 but is not yet completed.

[^3]: ${ }^{1}$ The Mustang to Shell Transmission Line was approved by the PUC in Docket No. 47585 but is not yet completed.

